You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

465 lines
24 KiB

#include "src/solver/TopologicalMinMaxLinearEquationSolver.h"
#include <utility>
#include <chrono>
#include "src/settings/SettingsManager.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/exceptions/IllegalArgumentException.h"
#include "src/exceptions/InvalidStateException.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
#include "storm-config.h"
#ifdef STORM_HAVE_CUDA
# include "cudaForStorm.h"
#endif
namespace storm {
namespace solver {
template<typename ValueType>
TopologicalMinMaxLinearEquationSolver<ValueType>::TopologicalMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A) : NativeMinMaxLinearEquationSolver<ValueType>(A) {
// Get the settings object to customize solving.
//storm::settings::Settings* settings = storm::settings::Settings::getInstance();
auto settings = storm::settings::topologicalValueIterationEquationSolverSettings();
// Get appropriate settings.
//this->maximalNumberOfIterations = settings->getOptionByLongName("maxiter").getArgument(0).getValueAsUnsignedInteger();
//this->precision = settings->getOptionByLongName("precision").getArgument(0).getValueAsDouble();
//this->relative = !settings->isSet("absolute");
this->maximalNumberOfIterations = settings.getMaximalIterationCount();
this->precision = settings.getPrecision();
this->relative = (settings.getConvergenceCriterion() == storm::settings::modules::TopologicalValueIterationEquationSolverSettings::ConvergenceCriterion::Relative);
auto generalSettings = storm::settings::generalSettings();
this->enableCuda = generalSettings.isCudaSet();
#ifdef STORM_HAVE_CUDA
STORM_LOG_INFO_COND(this->enableCuda, "Option CUDA was not set, but the topological value iteration solver will use it anyways.");
#endif
}
template<typename ValueType>
TopologicalMinMaxLinearEquationSolver<ValueType>::TopologicalMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : NativeMinMaxLinearEquationSolver<ValueType>(A, precision, maximalNumberOfIterations, relative) {
// Intentionally left empty.
}
template<typename ValueType>
void TopologicalMinMaxLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
#ifdef GPU_USE_FLOAT
#define __FORCE_FLOAT_CALCULATION true
#else
#define __FORCE_FLOAT_CALCULATION false
#endif
if (__FORCE_FLOAT_CALCULATION && std::is_same<ValueType, double>::value) {
// FIXME: This actually allocates quite some storage, because of this conversion, is it really necessary?
storm::storage::SparseMatrix<float> newA = this->A.template toValueType<float>();
TopologicalMinMaxLinearEquationSolver<float> newSolver(newA, this->precision, this->maximalNumberOfIterations, this->relative);
std::vector<float> new_x = storm::utility::vector::toValueType<float>(x);
std::vector<float> const new_b = storm::utility::vector::toValueType<float>(b);
newSolver.solveEquationSystem(minimize, new_x, new_b, nullptr, nullptr);
for (size_t i = 0, size = new_x.size(); i < size; ++i) {
x.at(i) = new_x.at(i);
}
return;
}
// For testing only
if (sizeof(ValueType) == sizeof(double)) {
//std::cout << "<<< Using CUDA-DOUBLE Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-DOUBLE Kernels >>>");
} else {
//std::cout << "<<< Using CUDA-FLOAT Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-FLOAT Kernels >>>");
}
// Now, we need to determine the SCCs of the MDP and perform a topological sort.
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = this->A.getRowGroupIndices();
// Check if the decomposition is necessary
#ifdef STORM_HAVE_CUDA
#define __USE_CUDAFORSTORM_OPT true
size_t const gpuSizeOfCompleteSystem = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(A.getRowCount()), nondeterministicChoiceIndices.size(), static_cast<size_t>(A.getEntryCount()));
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
#else
#define __USE_CUDAFORSTORM_OPT false
size_t const gpuSizeOfCompleteSystem = 0;
size_t const cudaFreeMemory = 0;
#endif
std::vector<std::pair<bool, storm::storage::StateBlock>> sccDecomposition;
if (__USE_CUDAFORSTORM_OPT && (gpuSizeOfCompleteSystem < cudaFreeMemory)) {
// Dummy output for SCC Times
//std::cout << "Computing the SCC Decomposition took 0ms" << std::endl;
#ifdef STORM_HAVE_CUDA
STORM_LOG_THROW(resetCudaDevice(), storm::exceptions::InvalidStateException, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
std::chrono::high_resolution_clock::time_point calcStartTime = std::chrono::high_resolution_clock::now();
bool result = false;
size_t globalIterations = 0;
if (minimize) {
result = __basicValueIteration_mvReduce_minimize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
} else {
result = __basicValueIteration_mvReduce_maximize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << globalIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
bool converged = false;
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
std::chrono::high_resolution_clock::time_point calcEndTime = std::chrono::high_resolution_clock::now();
//std::cout << "Obtaining the fixpoint solution took " << std::chrono::duration_cast<std::chrono::milliseconds>(calcEndTime - calcStartTime).count() << "ms." << std::endl;
//std::cout << "Used a total of " << globalIterations << " iterations with a maximum of " << globalIterations << " iterations in a single block." << std::endl;
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << globalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << globalIterations << " iterations.");
}
#else
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
#endif
} else {
std::chrono::high_resolution_clock::time_point sccStartTime = std::chrono::high_resolution_clock::now();
storm::storage::BitVector fullSystem(this->A.getRowGroupCount(), true);
storm::storage::StronglyConnectedComponentDecomposition<ValueType> sccDecomposition(this->A, fullSystem, false, false);
STORM_LOG_THROW(sccDecomposition.size() > 0, storm::exceptions::IllegalArgumentException, "Can not solve given equation system as the SCC decomposition returned no SCCs.");
storm::storage::SparseMatrix<ValueType> stronglyConnectedComponentsDependencyGraph = sccDecomposition.extractPartitionDependencyGraph(this->A);
std::vector<uint_fast64_t> topologicalSort = storm::utility::graph::getTopologicalSort(stronglyConnectedComponentsDependencyGraph);
// Calculate the optimal distribution of sccs
std::vector<std::pair<bool, storm::storage::StateBlock>> optimalSccs = this->getOptimalGroupingFromTopologicalSccDecomposition(sccDecomposition, topologicalSort, this->A);
LOG4CPLUS_INFO(logger, "Optimized SCC Decomposition, originally " << topologicalSort.size() << " SCCs, optimized to " << optimalSccs.size() << " SCCs.");
std::chrono::high_resolution_clock::time_point sccEndTime = std::chrono::high_resolution_clock::now();
//std::cout << "Computing the SCC Decomposition took " << std::chrono::duration_cast<std::chrono::milliseconds>(sccEndTime - sccStartTime).count() << "ms." << std::endl;
std::chrono::high_resolution_clock::time_point calcStartTime = std::chrono::high_resolution_clock::now();
std::vector<ValueType>* currentX = nullptr;
std::vector<ValueType>* swap = nullptr;
size_t currentMaxLocalIterations = 0;
size_t localIterations = 0;
size_t globalIterations = 0;
bool converged = true;
// Iterate over all SCCs of the MDP as specified by the topological sort. This guarantees that an SCC is only
// solved after all SCCs it depends on have been solved.
int counter = 0;
for (auto sccIndexIt = optimalSccs.cbegin(); sccIndexIt != optimalSccs.cend() && converged; ++sccIndexIt) {
bool const useGpu = sccIndexIt->first;
storm::storage::StateBlock const& scc = sccIndexIt->second;
// Generate a sub matrix
storm::storage::BitVector subMatrixIndices(this->A.getColumnCount(), scc.cbegin(), scc.cend());
storm::storage::SparseMatrix<ValueType> sccSubmatrix = this->A.getSubmatrix(true, subMatrixIndices, subMatrixIndices);
std::vector<ValueType> sccSubB(sccSubmatrix.getRowCount());
storm::utility::vector::selectVectorValues<ValueType>(sccSubB, subMatrixIndices, nondeterministicChoiceIndices, b);
std::vector<ValueType> sccSubX(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccSubXSwap(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccMultiplyResult(sccSubmatrix.getRowCount());
// Prepare the pointers for swapping in the calculation
currentX = &sccSubX;
swap = &sccSubXSwap;
storm::utility::vector::selectVectorValues<ValueType>(sccSubX, subMatrixIndices, x); // x is getCols() large, where as b and multiplyResult are getRows() (nondet. choices times states)
std::vector<uint_fast64_t> sccSubNondeterministicChoiceIndices(sccSubmatrix.getColumnCount() + 1);
sccSubNondeterministicChoiceIndices.at(0) = 0;
// Pre-process all dependent states
// Remove outgoing transitions and create the ChoiceIndices
uint_fast64_t innerIndex = 0;
uint_fast64_t outerIndex = 0;
for (uint_fast64_t state : scc) {
// Choice Indices
sccSubNondeterministicChoiceIndices.at(outerIndex + 1) = sccSubNondeterministicChoiceIndices.at(outerIndex) + (nondeterministicChoiceIndices[state + 1] - nondeterministicChoiceIndices[state]);
for (auto rowGroupIt = nondeterministicChoiceIndices[state]; rowGroupIt != nondeterministicChoiceIndices[state + 1]; ++rowGroupIt) {
typename storm::storage::SparseMatrix<ValueType>::const_rows row = this->A.getRow(rowGroupIt);
for (auto rowIt = row.begin(); rowIt != row.end(); ++rowIt) {
if (!subMatrixIndices.get(rowIt->getColumn())) {
// This is an outgoing transition of a state in the SCC to a state not included in the SCC
// Subtracting Pr(tau) * x_other from b fixes that
sccSubB.at(innerIndex) = sccSubB.at(innerIndex) + (rowIt->getValue() * x.at(rowIt->getColumn()));
}
}
++innerIndex;
}
++outerIndex;
}
// For the current SCC, we need to perform value iteration until convergence.
if (useGpu) {
#ifdef STORM_HAVE_CUDA
STORM_LOG_THROW(resetCudaDevice(), storm::exceptions::InvalidStateException, "Could not reset CUDA Device, can not use CUDA-based equation solver.");
//LOG4CPLUS_INFO(logger, "Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%).");
//LOG4CPLUS_INFO(logger, "We will allocate " << (sizeof(uint_fast64_t)* sccSubmatrix.rowIndications.size() + sizeof(uint_fast64_t)* sccSubmatrix.columnsAndValues.size() * 2 + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubB.size() + sizeof(double)* sccSubB.size() + sizeof(uint_fast64_t)* sccSubNondeterministicChoiceIndices.size()) << " Bytes.");
//LOG4CPLUS_INFO(logger, "The CUDA Runtime Version is " << getRuntimeCudaVersion());
bool result = false;
localIterations = 0;
if (minimize) {
result = __basicValueIteration_mvReduce_minimize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
} else {
result = __basicValueIteration_mvReduce_maximize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
globalIterations += localIterations;
#else
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
#endif
} else {
//std::cout << "WARNING: Using CPU based TopoSolver! (double)" << std::endl;
LOG4CPLUS_INFO(logger, "Performance Warning: Using CPU based TopoSolver! (double)");
localIterations = 0;
converged = false;
while (!converged && localIterations < this->maximalNumberOfIterations) {
// Compute x' = A*x + b.
sccSubmatrix.multiplyWithVector(*currentX, sccMultiplyResult);
storm::utility::vector::addVectors<ValueType>(sccMultiplyResult, sccSubB, sccMultiplyResult);
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus:
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (minimize) {
storm::utility::vector::reduceVectorMin<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, static_cast<ValueType>(this->precision), this->relative);
// Update environment variables.
std::swap(currentX, swap);
++localIterations;
++globalIterations;
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << this->maximalNumberOfIterations << " Iterations.");
}
// The Result of this SCC has to be taken back into the main result vector
innerIndex = 0;
for (uint_fast64_t state : scc) {
x.at(state) = currentX->at(innerIndex);
++innerIndex;
}
// Since the pointers for swapping in the calculation point to temps they should not be valid anymore
currentX = nullptr;
swap = nullptr;
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
}
//std::cout << "Used a total of " << globalIterations << " iterations with a maximum of " << localIterations << " iterations in a single block." << std::endl;
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << currentMaxLocalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << currentMaxLocalIterations << " iterations.");
}
std::chrono::high_resolution_clock::time_point calcEndTime = std::chrono::high_resolution_clock::now();
//std::cout << "Obtaining the fixpoint solution took " << std::chrono::duration_cast<std::chrono::milliseconds>(calcEndTime - calcStartTime).count() << "ms." << std::endl;
}
}
template<typename ValueType>
std::vector<std::pair<bool, storm::storage::StateBlock>>
TopologicalMinMaxLinearEquationSolver<ValueType>::getOptimalGroupingFromTopologicalSccDecomposition(storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& sccDecomposition, std::vector<uint_fast64_t> const& topologicalSort, storm::storage::SparseMatrix<ValueType> const& matrix) const {
std::vector<std::pair<bool, storm::storage::StateBlock>> result;
#ifdef STORM_HAVE_CUDA
// 95% to have a bit of padding
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
size_t lastResultIndex = 0;
std::vector<uint_fast64_t> const& rowGroupIndices = matrix.getRowGroupIndices();
size_t const gpuSizeOfCompleteSystem = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(matrix.getRowCount()), rowGroupIndices.size(), static_cast<size_t>(matrix.getEntryCount()));
size_t const gpuSizePerRowGroup = std::max(static_cast<size_t>(gpuSizeOfCompleteSystem / rowGroupIndices.size()), static_cast<size_t>(1));
size_t const maxRowGroupsPerMemory = cudaFreeMemory / gpuSizePerRowGroup;
size_t currentSize = 0;
size_t neededReserveSize = 0;
size_t startIndex = 0;
for (size_t i = 0; i < topologicalSort.size(); ++i) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[i]];
size_t const currentSccSize = scc.size();
uint_fast64_t rowCount = 0;
uint_fast64_t entryCount = 0;
for (auto sccIt = scc.cbegin(); sccIt != scc.cend(); ++sccIt) {
rowCount += matrix.getRowGroupSize(*sccIt);
entryCount += matrix.getRowGroupEntryCount(*sccIt);
}
size_t sccSize = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(rowCount), scc.size(), static_cast<size_t>(entryCount));
if ((currentSize + sccSize) <= cudaFreeMemory) {
// There is enough space left in the current group
neededReserveSize += currentSccSize;
currentSize += sccSize;
} else {
// This would make the last open group to big for the GPU
if (startIndex < i) {
if ((startIndex + 1) < i) {
// More than one component
std::vector<uint_fast64_t> tempGroups;
tempGroups.reserve(neededReserveSize);
// Copy the first group to make inplace_merge possible
storm::storage::StateBlock const& scc_first = sccDecomposition[topologicalSort[startIndex]];
tempGroups.insert(tempGroups.cend(), scc_first.cbegin(), scc_first.cend());
if (((startIndex + 1) + 80) >= i) {
size_t lastSize = 0;
for (size_t j = startIndex + 1; j < topologicalSort.size(); ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
lastSize = tempGroups.size();
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
std::vector<uint_fast64_t>::iterator middleIterator = tempGroups.begin();
std::advance(middleIterator, lastSize);
std::inplace_merge(tempGroups.begin(), middleIterator, tempGroups.end());
}
} else {
// Use std::sort
for (size_t j = startIndex + 1; j < i; ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
}
std::sort(tempGroups.begin(), tempGroups.end());
}
result.push_back(std::make_pair(true, storm::storage::StateBlock(tempGroups.cbegin(), tempGroups.cend())));
} else {
// Only one group, copy construct.
result.push_back(std::make_pair(true, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[startIndex]]))));
}
++lastResultIndex;
}
if (sccSize <= cudaFreeMemory) {
currentSize = sccSize;
neededReserveSize = currentSccSize;
startIndex = i;
} else {
// This group is too big to fit into the CUDA Memory by itself
result.push_back(std::make_pair(false, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[i]]))));
++lastResultIndex;
currentSize = 0;
neededReserveSize = 0;
startIndex = i + 1;
}
}
}
size_t const topologicalSortSize = topologicalSort.size();
if (startIndex < topologicalSortSize) {
if ((startIndex + 1) < topologicalSortSize) {
// More than one component
std::vector<uint_fast64_t> tempGroups;
tempGroups.reserve(neededReserveSize);
// Copy the first group to make inplace_merge possible.
storm::storage::StateBlock const& scc_first = sccDecomposition[topologicalSort[startIndex]];
tempGroups.insert(tempGroups.cend(), scc_first.cbegin(), scc_first.cend());
// For set counts <= 80, in-place merge is faster.
if (((startIndex + 1) + 80) >= topologicalSortSize) {
size_t lastSize = 0;
for (size_t j = startIndex + 1; j < topologicalSort.size(); ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
lastSize = tempGroups.size();
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
std::vector<uint_fast64_t>::iterator middleIterator = tempGroups.begin();
std::advance(middleIterator, lastSize);
std::inplace_merge(tempGroups.begin(), middleIterator, tempGroups.end());
}
} else {
// Use std::sort
for (size_t j = startIndex + 1; j < topologicalSort.size(); ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
}
std::sort(tempGroups.begin(), tempGroups.end());
}
result.push_back(std::make_pair(true, storm::storage::StateBlock(tempGroups.cbegin(), tempGroups.cend())));
}
else {
// Only one group, copy construct.
result.push_back(std::make_pair(true, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[startIndex]]))));
}
++lastResultIndex;
}
#else
for (auto sccIndexIt = topologicalSort.cbegin(); sccIndexIt != topologicalSort.cend(); ++sccIndexIt) {
storm::storage::StateBlock const& scc = sccDecomposition[*sccIndexIt];
result.push_back(std::make_pair(false, scc));
}
#endif
return result;
}
// Explicitly instantiate the solver.
template class TopologicalMinMaxLinearEquationSolver<double>;
template class TopologicalMinMaxLinearEquationSolver<float>;
} // namespace solver
} // namespace storm