You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

339 lines
8.5 KiB

/*
* This file is part of the program ltl2dstar (http://www.ltl2dstar.de/).
* Copyright (C) 2005-2007 Joachim Klein <j.klein@ltl2dstar.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef NBAANALYSIS_HPP
#define NBAANALYSIS_HPP
/** @file
* Provides class NBAAnalysis for performing analysis on non-deterministic B&auml;chi automata.
*/
#include "GraphAlgorithms.hpp"
#include <memory>
/**
* Perform (and cache) analysis for a given NBA.
*/
template <typename NBA_t>
class NBAAnalysis {
private:
/** The analysed NBA */
NBA_t& _nba;
/** Information about the SCCs of the NBA (cached) */
std::shared_ptr<SCCs> _sccs;
/** Information about the states where all the successor states are accepting (cached) */
std::shared_ptr<BitSet> _allSuccAccepting;
/** Information about the states that have an accepting true self-loop (cached) */
std::shared_ptr<BitSet> _accepting_true_loops;
/** Information about the reachability of states (cached) */
std::shared_ptr<std::vector<BitSet> > _reachability;
public:
/** Constructor.
* @param nba the NBA to be analyzed
*/
NBAAnalysis(NBA_t& nba) :
_nba(nba) {
}
/** Destructor */
~NBAAnalysis() {}
/** Get the SCCs for the NBA
* @return the SCCs
*/
SCCs& getSCCs() {
if (!_sccs) {
_sccs=std::shared_ptr<SCCs>(new SCCs());
GraphAlgorithms<NBA_t>::calculateSCCs(_nba, *_sccs);
}
return *_sccs;
}
/** Get the states for which all successor states are accepting.
* @return BitSet with the information
*/
const BitSet& getStatesWithAllSuccAccepting() {
if (!_allSuccAccepting) {
calculateStatesWithAllSuccAccepting();
}
return *_allSuccAccepting;
}
/** Get the states with accepting true self loops
* @return BitSet with the information
*/
const BitSet& getStatesWithAcceptingTrueLoops() {
if (!_accepting_true_loops) {
calculateAcceptingTrueLoops();
}
return *_accepting_true_loops;
}
/** Checks to see if NBA has only accepting (final) states.
* @return true iff all states are accepting
*/
bool areAllStatesFinal() {
for (typename NBA_t::iterator it=_nba.begin();
it!=_nba.end();
++it) {
if (!(*it).isFinal()) {
return false;
}
}
return true;
}
/** Get the accepting states from the NBA
* @return BitSet with the information
*/
const BitSet& getFinalStates() {
return _nba.getFinalStates();
}
/** Get the reachability analysis for the NBA
* @return vector of BitSets representing the set of state which are reachable from a given state.
*/
std::vector<BitSet>& getReachability() {
if (!_reachability) {
_reachability=std::shared_ptr<std::vector<BitSet> > (getSCCs().getReachabilityForAllStates());
}
return *_reachability;
}
/** Check if the NBA is empty.
* @return true iff the NBA has no accepting run.
*/
bool emptinessCheck() {
SCCs& sccs=getSCCs();
#ifdef VERBOSE
std::cerr << sccs << "\n";
std::cerr << " Reachability: "<< std::endl;
std::vector<BitSet>* reachable=sccs.getReachabilityForAllStates();
for (unsigned int t=0; t < reachable->size(); t++) {
std::cerr << t << " -> " << (*reachable)[t] << std::endl;
}
delete reachable;
#endif
for (unsigned int scc=0;
scc<sccs.countSCCs();
++scc) {
const BitSet& states_in_scc=sccs[scc];
// check to see if there is an accepting state in this SCC
for (BitSetIterator it=BitSetIterator(states_in_scc);
it!=BitSetIterator::end(states_in_scc);
++it) {
unsigned int state=*it;
#ifdef VERBOSE
std::cerr << "Considering state " << state << std::endl;
#endif
if (_nba[state]->isFinal()) {
// check to see if this SCC is a trivial SCC (can't reach itself)
#ifdef VERBOSE
std::cerr << " +final";
std::cerr << " " << states_in_scc.cardinality();
#endif
if (states_in_scc.cardinality()==1) {
// there is only one state in this scc ...
#ifdef VERBOSE
std::cerr << " +single";
#endif
if (sccs.stateIsReachable(state,state)==false) {
// ... and it doesn't loop to itself
// -> can not guarantee accepting run
#ifdef VERBOSE
std::cerr << " -no_loop" << std::endl;
#endif
continue;
}
}
// if we are here, the SCC has more than 1 state or
// exactly one self-looping state
// -> accepting run
#ifdef VERBOSE
std::cerr << "+acc" << std::endl;
#endif
// check that SCC can be reached from initial state
assert(_nba.getStartState());
if (sccs.stateIsReachable(_nba.getStartState()->getName(), state)) {
#ifdef VERBOSE
std::cerr << "Found accepting state = "<< state << std::endl;
#endif
return false;
}
#ifdef VERBOSE
std::cerr << "Not reachable!"<< std::endl;
#endif
continue;
}
}
}
return true;
}
private:
/**
* Calculates BitSet which specifies which states in the NBA
* only have accepting successors.
*/
void calculateStatesWithAllSuccAccepting() {
_allSuccAccepting=std::shared_ptr<BitSet>(new BitSet());
BitSet& result=*_allSuccAccepting;
SCCs& sccs=getSCCs();
std::vector<bool> scc_all_final(sccs.countSCCs());
for (unsigned int i=0;i<scc_all_final.size();i++) {
scc_all_final[i]=false;
}
for (unsigned int i=sccs.countSCCs();
i>0;
--i) {
// go backward in topological order...
unsigned int scc=(sccs.topologicalOrder())[i-1];
const BitSet& states_in_scc=sccs[scc];
// check to see if all states in this SCC are final
scc_all_final[scc]=true;
for (BitSetIterator it=BitSetIterator(states_in_scc);
it!=BitSetIterator::end(states_in_scc);
++it) {
if (!_nba[*it]->isFinal()) {
scc_all_final[scc]=false;
break;
}
}
bool might_be_final=false;
if (scc_all_final[scc]==false) {
if (states_in_scc.length()==1) {
// there is only one state in this scc ...
unsigned int state=states_in_scc.nextSetBit(0);
if (sccs.stateIsReachable(state,state)==false) {
// ... and it doesn't loop to itself
might_be_final=true;
}
}
}
if (scc_all_final[scc]==true || might_be_final) {
// Check to see if all successors are final...
bool all_successors_are_final=true;
BitSet& scc_succ=sccs.successors(scc);
for (BitSetIterator it=BitSetIterator(scc_succ);
it!=BitSetIterator::end(scc_succ);
++it) {
if (!scc_all_final[*it]) {
all_successors_are_final=false;
break;
}
}
if (all_successors_are_final) {
// Add all states in this SCC to the result-set
result.Or(states_in_scc);
if (might_be_final) {
scc_all_final[scc]=true;
}
}
}
}
}
/**
* Calculate the set of states that are accepting and have a true self loop.
*/
void calculateAcceptingTrueLoops() {
_accepting_true_loops=std::shared_ptr<BitSet>(new BitSet());
BitSet& isAcceptingTrueLoop=*_accepting_true_loops;
SCCs& sccs=getSCCs();
for (unsigned int scc=0;
scc<sccs.countSCCs();
++scc) {
if (sccs[scc].cardinality()==1) {
unsigned int state_id=sccs[scc].nextSetBit(0);
typename NBA_t::state_type *state=_nba[state_id];
if (!state->isFinal()) {
// not final, consider next
continue;
}
if (!sccs.successors(scc).isEmpty()) {
// there are edges leaving this state, consider next
continue;
}
bool no_empty_to=true;
if (sccs.stateIsReachable(state_id, state_id)) {
// state has at least one self-loop
// we have to check that there is no edge with empty To
for (typename NBA_t::edge_iterator eit=state->edges_begin();
eit!=state->edges_end();
++eit) {
typename NBA_t::edge_type edge=*eit;
if (edge.second->isEmpty()) {
// not all edges lead back to the state...
no_empty_to=false;
break;
}
}
if (no_empty_to) {
// When we are here the state is a final true loop
isAcceptingTrueLoop.set(state_id);
// std::cerr << "True Loop: " << state_id << std::endl;
}
}
}
}
}
};
#endif