You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
339 lines
8.5 KiB
339 lines
8.5 KiB
/*
|
|
* This file is part of the program ltl2dstar (http://www.ltl2dstar.de/).
|
|
* Copyright (C) 2005-2007 Joachim Klein <j.klein@ltl2dstar.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
|
|
#ifndef NBAANALYSIS_HPP
|
|
#define NBAANALYSIS_HPP
|
|
|
|
/** @file
|
|
* Provides class NBAAnalysis for performing analysis on non-deterministic Bächi automata.
|
|
*/
|
|
|
|
#include "GraphAlgorithms.hpp"
|
|
|
|
#include <memory>
|
|
|
|
|
|
/**
|
|
* Perform (and cache) analysis for a given NBA.
|
|
*/
|
|
template <typename NBA_t>
|
|
class NBAAnalysis {
|
|
private:
|
|
/** The analysed NBA */
|
|
NBA_t& _nba;
|
|
|
|
/** Information about the SCCs of the NBA (cached) */
|
|
std::shared_ptr<SCCs> _sccs;
|
|
/** Information about the states where all the successor states are accepting (cached) */
|
|
std::shared_ptr<BitSet> _allSuccAccepting;
|
|
/** Information about the states that have an accepting true self-loop (cached) */
|
|
std::shared_ptr<BitSet> _accepting_true_loops;
|
|
/** Information about the reachability of states (cached) */
|
|
std::shared_ptr<std::vector<BitSet> > _reachability;
|
|
|
|
public:
|
|
/** Constructor.
|
|
* @param nba the NBA to be analyzed
|
|
*/
|
|
NBAAnalysis(NBA_t& nba) :
|
|
_nba(nba) {
|
|
}
|
|
|
|
/** Destructor */
|
|
~NBAAnalysis() {}
|
|
|
|
/** Get the SCCs for the NBA
|
|
* @return the SCCs
|
|
*/
|
|
SCCs& getSCCs() {
|
|
if (!_sccs) {
|
|
_sccs=std::shared_ptr<SCCs>(new SCCs());
|
|
GraphAlgorithms<NBA_t>::calculateSCCs(_nba, *_sccs);
|
|
}
|
|
return *_sccs;
|
|
}
|
|
|
|
/** Get the states for which all successor states are accepting.
|
|
* @return BitSet with the information
|
|
*/
|
|
const BitSet& getStatesWithAllSuccAccepting() {
|
|
if (!_allSuccAccepting) {
|
|
calculateStatesWithAllSuccAccepting();
|
|
}
|
|
return *_allSuccAccepting;
|
|
}
|
|
|
|
/** Get the states with accepting true self loops
|
|
* @return BitSet with the information
|
|
*/
|
|
const BitSet& getStatesWithAcceptingTrueLoops() {
|
|
if (!_accepting_true_loops) {
|
|
calculateAcceptingTrueLoops();
|
|
}
|
|
return *_accepting_true_loops;
|
|
}
|
|
|
|
|
|
/** Checks to see if NBA has only accepting (final) states.
|
|
* @return true iff all states are accepting
|
|
*/
|
|
bool areAllStatesFinal() {
|
|
for (typename NBA_t::iterator it=_nba.begin();
|
|
it!=_nba.end();
|
|
++it) {
|
|
if (!(*it).isFinal()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Get the accepting states from the NBA
|
|
* @return BitSet with the information
|
|
*/
|
|
const BitSet& getFinalStates() {
|
|
return _nba.getFinalStates();
|
|
}
|
|
|
|
/** Get the reachability analysis for the NBA
|
|
* @return vector of BitSets representing the set of state which are reachable from a given state.
|
|
*/
|
|
std::vector<BitSet>& getReachability() {
|
|
if (!_reachability) {
|
|
_reachability=std::shared_ptr<std::vector<BitSet> > (getSCCs().getReachabilityForAllStates());
|
|
}
|
|
|
|
return *_reachability;
|
|
}
|
|
|
|
|
|
/** Check if the NBA is empty.
|
|
* @return true iff the NBA has no accepting run.
|
|
*/
|
|
bool emptinessCheck() {
|
|
SCCs& sccs=getSCCs();
|
|
|
|
#ifdef VERBOSE
|
|
std::cerr << sccs << "\n";
|
|
|
|
std::cerr << " Reachability: "<< std::endl;
|
|
std::vector<BitSet>* reachable=sccs.getReachabilityForAllStates();
|
|
for (unsigned int t=0; t < reachable->size(); t++) {
|
|
std::cerr << t << " -> " << (*reachable)[t] << std::endl;
|
|
}
|
|
delete reachable;
|
|
#endif
|
|
|
|
for (unsigned int scc=0;
|
|
scc<sccs.countSCCs();
|
|
++scc) {
|
|
const BitSet& states_in_scc=sccs[scc];
|
|
|
|
// check to see if there is an accepting state in this SCC
|
|
for (BitSetIterator it=BitSetIterator(states_in_scc);
|
|
it!=BitSetIterator::end(states_in_scc);
|
|
++it) {
|
|
unsigned int state=*it;
|
|
|
|
#ifdef VERBOSE
|
|
std::cerr << "Considering state " << state << std::endl;
|
|
#endif
|
|
if (_nba[state]->isFinal()) {
|
|
// check to see if this SCC is a trivial SCC (can't reach itself)
|
|
|
|
#ifdef VERBOSE
|
|
std::cerr << " +final";
|
|
std::cerr << " " << states_in_scc.cardinality();
|
|
#endif
|
|
|
|
if (states_in_scc.cardinality()==1) {
|
|
// there is only one state in this scc ...
|
|
|
|
#ifdef VERBOSE
|
|
std::cerr << " +single";
|
|
#endif
|
|
|
|
if (sccs.stateIsReachable(state,state)==false) {
|
|
// ... and it doesn't loop to itself
|
|
// -> can not guarantee accepting run
|
|
|
|
#ifdef VERBOSE
|
|
std::cerr << " -no_loop" << std::endl;
|
|
#endif
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// if we are here, the SCC has more than 1 state or
|
|
// exactly one self-looping state
|
|
// -> accepting run
|
|
|
|
#ifdef VERBOSE
|
|
std::cerr << "+acc" << std::endl;
|
|
#endif
|
|
|
|
// check that SCC can be reached from initial state
|
|
assert(_nba.getStartState());
|
|
if (sccs.stateIsReachable(_nba.getStartState()->getName(), state)) {
|
|
#ifdef VERBOSE
|
|
std::cerr << "Found accepting state = "<< state << std::endl;
|
|
#endif
|
|
return false;
|
|
}
|
|
#ifdef VERBOSE
|
|
std::cerr << "Not reachable!"<< std::endl;
|
|
#endif
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/**
|
|
* Calculates BitSet which specifies which states in the NBA
|
|
* only have accepting successors.
|
|
*/
|
|
void calculateStatesWithAllSuccAccepting() {
|
|
_allSuccAccepting=std::shared_ptr<BitSet>(new BitSet());
|
|
BitSet& result=*_allSuccAccepting;
|
|
SCCs& sccs=getSCCs();
|
|
|
|
std::vector<bool> scc_all_final(sccs.countSCCs());
|
|
for (unsigned int i=0;i<scc_all_final.size();i++) {
|
|
scc_all_final[i]=false;
|
|
}
|
|
|
|
for (unsigned int i=sccs.countSCCs();
|
|
i>0;
|
|
--i) {
|
|
// go backward in topological order...
|
|
unsigned int scc=(sccs.topologicalOrder())[i-1];
|
|
|
|
const BitSet& states_in_scc=sccs[scc];
|
|
|
|
// check to see if all states in this SCC are final
|
|
scc_all_final[scc]=true;
|
|
for (BitSetIterator it=BitSetIterator(states_in_scc);
|
|
it!=BitSetIterator::end(states_in_scc);
|
|
++it) {
|
|
if (!_nba[*it]->isFinal()) {
|
|
scc_all_final[scc]=false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
bool might_be_final=false;
|
|
if (scc_all_final[scc]==false) {
|
|
if (states_in_scc.length()==1) {
|
|
// there is only one state in this scc ...
|
|
unsigned int state=states_in_scc.nextSetBit(0);
|
|
|
|
if (sccs.stateIsReachable(state,state)==false) {
|
|
// ... and it doesn't loop to itself
|
|
might_be_final=true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (scc_all_final[scc]==true || might_be_final) {
|
|
// Check to see if all successors are final...
|
|
bool all_successors_are_final=true;
|
|
BitSet& scc_succ=sccs.successors(scc);
|
|
for (BitSetIterator it=BitSetIterator(scc_succ);
|
|
it!=BitSetIterator::end(scc_succ);
|
|
++it) {
|
|
if (!scc_all_final[*it]) {
|
|
all_successors_are_final=false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (all_successors_are_final) {
|
|
// Add all states in this SCC to the result-set
|
|
result.Or(states_in_scc);
|
|
|
|
if (might_be_final) {
|
|
scc_all_final[scc]=true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Calculate the set of states that are accepting and have a true self loop.
|
|
*/
|
|
void calculateAcceptingTrueLoops() {
|
|
_accepting_true_loops=std::shared_ptr<BitSet>(new BitSet());
|
|
BitSet& isAcceptingTrueLoop=*_accepting_true_loops;
|
|
SCCs& sccs=getSCCs();
|
|
|
|
for (unsigned int scc=0;
|
|
scc<sccs.countSCCs();
|
|
++scc) {
|
|
if (sccs[scc].cardinality()==1) {
|
|
unsigned int state_id=sccs[scc].nextSetBit(0);
|
|
typename NBA_t::state_type *state=_nba[state_id];
|
|
|
|
if (!state->isFinal()) {
|
|
// not final, consider next
|
|
continue;
|
|
}
|
|
|
|
if (!sccs.successors(scc).isEmpty()) {
|
|
// there are edges leaving this state, consider next
|
|
continue;
|
|
}
|
|
|
|
bool no_empty_to=true;
|
|
if (sccs.stateIsReachable(state_id, state_id)) {
|
|
// state has at least one self-loop
|
|
// we have to check that there is no edge with empty To
|
|
for (typename NBA_t::edge_iterator eit=state->edges_begin();
|
|
eit!=state->edges_end();
|
|
++eit) {
|
|
typename NBA_t::edge_type edge=*eit;
|
|
if (edge.second->isEmpty()) {
|
|
// not all edges lead back to the state...
|
|
no_empty_to=false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (no_empty_to) {
|
|
// When we are here the state is a final true loop
|
|
isAcceptingTrueLoop.set(state_id);
|
|
// std::cerr << "True Loop: " << state_id << std::endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
#endif
|