You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2560 lines
82 KiB

/*
* Copyright 2011-2014 Formal Methods and Tools, University of Twente
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sylvan_config.h>
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <avl.h>
#include <refs.h>
#include <sha2.h>
#include <sylvan.h>
#include <sylvan_common.h>
/**
* MDD node structure
*/
typedef struct __attribute__((packed)) mddnode {
uint64_t a, b;
} * mddnode_t; // 16 bytes
// RmRR RRRR RRRR VVVV | VVVV DcDD DDDD DDDD (little endian - in memory)
// VVVV RRRR RRRR RRRm | DDDD DDDD DDDc VVVV (big endian)
// Ensure our mddnode is 16 bytes
typedef char __lddmc_check_mddnode_t_is_16_bytes[(sizeof(struct mddnode)==16) ? 1 : -1];
static inline uint32_t __attribute__((unused))
mddnode_getvalue(mddnode_t n)
{
return *(uint32_t*)((uint8_t*)n+6);
}
static inline uint8_t __attribute__((unused))
mddnode_getmark(mddnode_t n)
{
return n->a & 1;
}
static inline uint8_t __attribute__((unused))
mddnode_getcopy(mddnode_t n)
{
return n->b & 0x10000 ? 1 : 0;
}
static inline uint64_t __attribute__((unused))
mddnode_getright(mddnode_t n)
{
return (n->a & 0x0000ffffffffffff) >> 1;
}
static inline uint64_t __attribute__((unused))
mddnode_getdown(mddnode_t n)
{
return n->b >> 17;
}
static inline void __attribute__((unused))
mddnode_setvalue(mddnode_t n, uint32_t value)
{
*(uint32_t*)((uint8_t*)n+6) = value;
}
static inline void __attribute__((unused))
mddnode_setmark(mddnode_t n, uint8_t mark)
{
n->a = (n->a & 0xfffffffffffffffe) | (mark ? 1 : 0);
}
static inline void __attribute__((unused))
mddnode_setright(mddnode_t n, uint64_t right)
{
n->a = (n->a & 0xffff000000000001) | (right << 1);
}
static inline void __attribute__((unused))
mddnode_setdown(mddnode_t n, uint64_t down)
{
n->b = (n->b & 0x000000000001ffff) | (down << 16);
}
static inline void __attribute__((unused))
mddnode_make(mddnode_t n, uint32_t value, uint64_t right, uint64_t down)
{
n->a = right << 1;
n->b = down << 17;
*(uint32_t*)((uint8_t*)n+6) = value;
}
static inline void __attribute__((unused))
mddnode_makecopy(mddnode_t n, uint64_t right, uint64_t down)
{
n->a = right << 1;
n->b = ((down << 1) | 1) << 16;
}
#define GETNODE(mdd) ((mddnode_t)llmsset_index_to_ptr(nodes, mdd))
/**
* Implementation of garbage collection
*/
/* Recursively mark MDD nodes as 'in use' */
VOID_TASK_IMPL_1(lddmc_gc_mark_rec, MDD, mdd)
{
if (mdd <= lddmc_true) return;
if (llmsset_mark(nodes, mdd)) {
mddnode_t n = GETNODE(mdd);
SPAWN(lddmc_gc_mark_rec, mddnode_getright(n));
CALL(lddmc_gc_mark_rec, mddnode_getdown(n));
SYNC(lddmc_gc_mark_rec);
}
}
/**
* External references
*/
refs_table_t mdd_refs;
MDD
lddmc_ref(MDD a)
{
if (a == lddmc_true || a == lddmc_false) return a;
refs_up(&mdd_refs, a);
return a;
}
void
lddmc_deref(MDD a)
{
if (a == lddmc_true || a == lddmc_false) return;
refs_down(&mdd_refs, a);
}
size_t
lddmc_count_refs()
{
return refs_count(&mdd_refs);
}
/* Called during garbage collection */
VOID_TASK_0(lddmc_gc_mark_external_refs)
{
// iterate through refs hash table, mark all found
size_t count=0;
uint64_t *it = refs_iter(&mdd_refs, 0, mdd_refs.refs_size);
while (it != NULL) {
SPAWN(lddmc_gc_mark_rec, refs_next(&mdd_refs, &it, mdd_refs.refs_size));
count++;
}
while (count--) {
SYNC(lddmc_gc_mark_rec);
}
}
/* Infrastructure for internal markings */
DECLARE_THREAD_LOCAL(lddmc_refs_key, lddmc_refs_internal_t);
VOID_TASK_0(lddmc_refs_mark_task)
{
LOCALIZE_THREAD_LOCAL(lddmc_refs_key, lddmc_refs_internal_t);
size_t i, j=0;
for (i=0; i<lddmc_refs_key->r_count; i++) {
if (j >= 40) {
while (j--) SYNC(lddmc_gc_mark_rec);
j=0;
}
SPAWN(lddmc_gc_mark_rec, lddmc_refs_key->results[i]);
j++;
}
for (i=0; i<lddmc_refs_key->s_count; i++) {
Task *t = lddmc_refs_key->spawns[i];
if (!TASK_IS_STOLEN(t)) break;
if (TASK_IS_COMPLETED(t)) {
if (j >= 40) {
while (j--) SYNC(lddmc_gc_mark_rec);
j=0;
}
SPAWN(lddmc_gc_mark_rec, *(BDD*)TASK_RESULT(t));
j++;
}
}
while (j--) SYNC(lddmc_gc_mark_rec);
}
VOID_TASK_0(lddmc_refs_mark)
{
TOGETHER(lddmc_refs_mark_task);
}
VOID_TASK_0(lddmc_refs_init_task)
{
lddmc_refs_internal_t s = (lddmc_refs_internal_t)malloc(sizeof(struct lddmc_refs_internal));
s->r_size = 128;
s->r_count = 0;
s->s_size = 128;
s->s_count = 0;
s->results = (BDD*)malloc(sizeof(BDD) * 128);
s->spawns = (Task**)malloc(sizeof(Task*) * 128);
SET_THREAD_LOCAL(lddmc_refs_key, s);
}
VOID_TASK_0(lddmc_refs_init)
{
INIT_THREAD_LOCAL(lddmc_refs_key);
TOGETHER(lddmc_refs_init_task);
sylvan_gc_add_mark(10, TASK(lddmc_refs_mark));
}
/**
* Initialize and quit functions
*/
static void
lddmc_quit()
{
refs_free(&mdd_refs);
}
void
sylvan_init_ldd()
{
sylvan_register_quit(lddmc_quit);
sylvan_gc_add_mark(10, TASK(lddmc_gc_mark_external_refs));
// Sanity check
if (sizeof(struct mddnode) != 16) {
fprintf(stderr, "Invalid size of mdd nodes: %ld\n", sizeof(struct mddnode));
exit(1);
}
refs_create(&mdd_refs, 1024);
LACE_ME;
CALL(lddmc_refs_init);
}
/**
* Primitives
*/
MDD
lddmc_makenode(uint32_t value, MDD ifeq, MDD ifneq)
{
if (ifeq == lddmc_false) return ifneq;
// check if correct (should be false, or next in value)
assert(ifneq != lddmc_true);
if (ifneq != lddmc_false) assert(value < mddnode_getvalue(GETNODE(ifneq)));
struct mddnode n;
mddnode_make(&n, value, ifneq, ifeq);
int created;
uint64_t index = llmsset_lookup(nodes, n.a, n.b, &created);
if (index == 0) {
lddmc_refs_push(ifeq);
lddmc_refs_push(ifneq);
LACE_ME;
sylvan_gc();
lddmc_refs_pop(1);
index = llmsset_lookup(nodes, n.a, n.b, &created);
if (index == 0) {
fprintf(stderr, "MDD Unique table full, %zu of %zu buckets filled!\n", llmsset_count_marked(nodes), llmsset_get_size(nodes));
exit(1);
}
}
if (created) sylvan_stats_count(LDD_NODES_CREATED);
else sylvan_stats_count(LDD_NODES_REUSED);
return (MDD)index;
}
MDD
lddmc_make_copynode(MDD ifeq, MDD ifneq)
{
struct mddnode n;
mddnode_makecopy(&n, ifneq, ifeq);
int created;
uint64_t index = llmsset_lookup(nodes, n.a, n.b, &created);
if (index == 0) {
lddmc_refs_push(ifeq);
lddmc_refs_push(ifneq);
LACE_ME;
sylvan_gc();
lddmc_refs_pop(1);
index = llmsset_lookup(nodes, n.a, n.b, &created);
if (index == 0) {
fprintf(stderr, "MDD Unique table full, %zu of %zu buckets filled!\n", llmsset_count_marked(nodes), llmsset_get_size(nodes));
exit(1);
}
}
if (created) sylvan_stats_count(LDD_NODES_CREATED);
else sylvan_stats_count(LDD_NODES_REUSED);
return (MDD)index;
}
MDD
lddmc_extendnode(MDD mdd, uint32_t value, MDD ifeq)
{
if (mdd <= lddmc_true) return lddmc_makenode(value, ifeq, mdd);
mddnode_t n = GETNODE(mdd);
if (mddnode_getcopy(n)) return lddmc_make_copynode(mddnode_getdown(n), lddmc_extendnode(mddnode_getright(n), value, ifeq));
uint32_t n_value = mddnode_getvalue(n);
if (n_value < value) return lddmc_makenode(n_value, mddnode_getdown(n), lddmc_extendnode(mddnode_getright(n), value, ifeq));
if (n_value == value) return lddmc_makenode(value, ifeq, mddnode_getright(n));
/* (n_value > value) */ return lddmc_makenode(value, ifeq, mdd);
}
uint32_t
lddmc_getvalue(MDD mdd)
{
return mddnode_getvalue(GETNODE(mdd));
}
MDD
lddmc_getdown(MDD mdd)
{
return mddnode_getdown(GETNODE(mdd));
}
MDD
lddmc_getright(MDD mdd)
{
return mddnode_getright(GETNODE(mdd));
}
MDD
lddmc_follow(MDD mdd, uint32_t value)
{
for (;;) {
if (mdd <= lddmc_true) return mdd;
const mddnode_t n = GETNODE(mdd);
if (!mddnode_getcopy(n)) {
const uint32_t v = mddnode_getvalue(n);
if (v == value) return mddnode_getdown(n);
if (v > value) return lddmc_false;
}
mdd = mddnode_getright(n);
}
}
int
lddmc_iscopy(MDD mdd)
{
if (mdd <= lddmc_true) return 0;
mddnode_t n = GETNODE(mdd);
return mddnode_getcopy(n) ? 1 : 0;
}
MDD
lddmc_followcopy(MDD mdd)
{
if (mdd <= lddmc_true) return lddmc_false;
mddnode_t n = GETNODE(mdd);
if (mddnode_getcopy(n)) return mddnode_getdown(n);
else return lddmc_false;
}
/**
* MDD operations
*/
static inline int
match_ldds(MDD *one, MDD *two)
{
MDD m1 = *one, m2 = *two;
if (m1 == lddmc_false || m2 == lddmc_false) return 0;
mddnode_t n1 = GETNODE(m1), n2 = GETNODE(m2);
uint32_t v1 = mddnode_getvalue(n1), v2 = mddnode_getvalue(n2);
while (v1 != v2) {
if (v1 < v2) {
m1 = mddnode_getright(n1);
if (m1 == lddmc_false) return 0;
n1 = GETNODE(m1);
v1 = mddnode_getvalue(n1);
} else if (v1 > v2) {
m2 = mddnode_getright(n2);
if (m2 == lddmc_false) return 0;
n2 = GETNODE(m2);
v2 = mddnode_getvalue(n2);
}
}
*one = m1;
*two = m2;
return 1;
}
TASK_IMPL_2(MDD, lddmc_union, MDD, a, MDD, b)
{
/* Terminal cases */
if (a == b) return a;
if (a == lddmc_false) return b;
if (b == lddmc_false) return a;
assert(a != lddmc_true && b != lddmc_true); // expecting same length
/* Test gc */
sylvan_gc_test();
sylvan_stats_count(LDD_UNION);
/* Improve cache behavior */
if (a < b) { MDD tmp=b; b=a; a=tmp; }
/* Access cache */
MDD result;
if (cache_get3(CACHE_MDD_UNION, a, b, 0, &result)) {
sylvan_stats_count(LDD_UNION_CACHED);
return result;
}
/* Get nodes */
mddnode_t na = GETNODE(a);
mddnode_t nb = GETNODE(b);
const int na_copy = mddnode_getcopy(na) ? 1 : 0;
const int nb_copy = mddnode_getcopy(nb) ? 1 : 0;
const uint32_t na_value = mddnode_getvalue(na);
const uint32_t nb_value = mddnode_getvalue(nb);
/* Perform recursive calculation */
if (na_copy && nb_copy) {
lddmc_refs_spawn(SPAWN(lddmc_union, mddnode_getdown(na), mddnode_getdown(nb)));
MDD right = CALL(lddmc_union, mddnode_getright(na), mddnode_getright(nb));
lddmc_refs_push(right);
MDD down = lddmc_refs_sync(SYNC(lddmc_union));
lddmc_refs_pop(1);
result = lddmc_make_copynode(down, right);
} else if (na_copy) {
MDD right = CALL(lddmc_union, mddnode_getright(na), b);
result = lddmc_make_copynode(mddnode_getdown(na), right);
} else if (nb_copy) {
MDD right = CALL(lddmc_union, a, mddnode_getright(nb));
result = lddmc_make_copynode(mddnode_getdown(nb), right);
} else if (na_value < nb_value) {
MDD right = CALL(lddmc_union, mddnode_getright(na), b);
result = lddmc_makenode(na_value, mddnode_getdown(na), right);
} else if (na_value == nb_value) {
lddmc_refs_spawn(SPAWN(lddmc_union, mddnode_getdown(na), mddnode_getdown(nb)));
MDD right = CALL(lddmc_union, mddnode_getright(na), mddnode_getright(nb));
lddmc_refs_push(right);
MDD down = lddmc_refs_sync(SYNC(lddmc_union));
lddmc_refs_pop(1);
result = lddmc_makenode(na_value, down, right);
} else /* na_value > nb_value */ {
MDD right = CALL(lddmc_union, a, mddnode_getright(nb));
result = lddmc_makenode(nb_value, mddnode_getdown(nb), right);
}
/* Write to cache */
if (cache_put3(CACHE_MDD_UNION, a, b, 0, result)) sylvan_stats_count(LDD_UNION_CACHEDPUT);
return result;
}
TASK_IMPL_2(MDD, lddmc_minus, MDD, a, MDD, b)
{
/* Terminal cases */
if (a == b) return lddmc_false;
if (a == lddmc_false) return lddmc_false;
if (b == lddmc_false) return a;
assert(b != lddmc_true);
assert(a != lddmc_true); // Universe is unknown!! // Possibly depth issue?
/* Test gc */
sylvan_gc_test();
sylvan_stats_count(LDD_MINUS);
/* Access cache */
MDD result;
if (cache_get3(CACHE_MDD_MINUS, a, b, 0, &result)) {
sylvan_stats_count(LDD_MINUS_CACHED);
return result;
}
/* Get nodes */
mddnode_t na = GETNODE(a);
mddnode_t nb = GETNODE(b);
uint32_t na_value = mddnode_getvalue(na);
uint32_t nb_value = mddnode_getvalue(nb);
/* Perform recursive calculation */
if (na_value < nb_value) {
MDD right = CALL(lddmc_minus, mddnode_getright(na), b);
result = lddmc_makenode(na_value, mddnode_getdown(na), right);
} else if (na_value == nb_value) {
lddmc_refs_spawn(SPAWN(lddmc_minus, mddnode_getright(na), mddnode_getright(nb)));
MDD down = CALL(lddmc_minus, mddnode_getdown(na), mddnode_getdown(nb));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_minus));
lddmc_refs_pop(1);
result = lddmc_makenode(na_value, down, right);
} else /* na_value > nb_value */ {
result = CALL(lddmc_minus, a, mddnode_getright(nb));
}
/* Write to cache */
if (cache_put3(CACHE_MDD_MINUS, a, b, 0, result)) sylvan_stats_count(LDD_MINUS_CACHEDPUT);
return result;
}
/* result: a plus b; res2: b minus a */
TASK_IMPL_3(MDD, lddmc_zip, MDD, a, MDD, b, MDD*, res2)
{
/* Terminal cases */
if (a == b) {
*res2 = lddmc_false;
return a;
}
if (a == lddmc_false) {
*res2 = b;
return b;
}
if (b == lddmc_false) {
*res2 = lddmc_false;
return a;
}
assert(a != lddmc_true && b != lddmc_true); // expecting same length
/* Test gc */
sylvan_gc_test();
/* Maybe not the ideal way */
sylvan_stats_count(LDD_ZIP);
/* Access cache */
MDD result;
if (cache_get3(CACHE_MDD_UNION, a, b, 0, &result) &&
cache_get3(CACHE_MDD_MINUS, b, a, 0, res2)) {
sylvan_stats_count(LDD_ZIP);
return result;
}
/* Get nodes */
mddnode_t na = GETNODE(a);
mddnode_t nb = GETNODE(b);
uint32_t na_value = mddnode_getvalue(na);
uint32_t nb_value = mddnode_getvalue(nb);
/* Perform recursive calculation */
if (na_value < nb_value) {
MDD right = CALL(lddmc_zip, mddnode_getright(na), b, res2);
result = lddmc_makenode(na_value, mddnode_getdown(na), right);
} else if (na_value == nb_value) {
MDD down2, right2;
lddmc_refs_spawn(SPAWN(lddmc_zip, mddnode_getdown(na), mddnode_getdown(nb), &down2));
MDD right = CALL(lddmc_zip, mddnode_getright(na), mddnode_getright(nb), &right2);
lddmc_refs_push(right);
lddmc_refs_push(right2);
MDD down = lddmc_refs_sync(SYNC(lddmc_zip));
lddmc_refs_pop(2);
result = lddmc_makenode(na_value, down, right);
*res2 = lddmc_makenode(na_value, down2, right2);
} else /* na_value > nb_value */ {
MDD right2;
MDD right = CALL(lddmc_zip, a, mddnode_getright(nb), &right2);
result = lddmc_makenode(nb_value, mddnode_getdown(nb), right);
*res2 = lddmc_makenode(nb_value, mddnode_getdown(nb), right2);
}
/* Write to cache */
int c1 = cache_put3(CACHE_MDD_UNION, a, b, 0, result);
int c2 = cache_put3(CACHE_MDD_MINUS, b, a, 0, *res2);
if (c1 && c2) sylvan_stats_count(LDD_ZIP_CACHEDPUT);
return result;
}
TASK_IMPL_2(MDD, lddmc_intersect, MDD, a, MDD, b)
{
/* Terminal cases */
if (a == b) return a;
if (a == lddmc_false || b == lddmc_false) return lddmc_false;
assert(a != lddmc_true && b != lddmc_true);
/* Test gc */
sylvan_gc_test();
sylvan_stats_count(LDD_INTERSECT);
/* Get nodes */
mddnode_t na = GETNODE(a);
mddnode_t nb = GETNODE(b);
uint32_t na_value = mddnode_getvalue(na);
uint32_t nb_value = mddnode_getvalue(nb);
/* Skip nodes if possible */
while (na_value != nb_value) {
if (na_value < nb_value) {
a = mddnode_getright(na);
if (a == lddmc_false) return lddmc_false;
na = GETNODE(a);
na_value = mddnode_getvalue(na);
}
if (nb_value < na_value) {
b = mddnode_getright(nb);
if (b == lddmc_false) return lddmc_false;
nb = GETNODE(b);
nb_value = mddnode_getvalue(nb);
}
}
/* Access cache */
MDD result;
if (cache_get3(CACHE_MDD_INTERSECT, a, b, 0, &result)) {
sylvan_stats_count(LDD_INTERSECT_CACHED);
return result;
}
/* Perform recursive calculation */
lddmc_refs_spawn(SPAWN(lddmc_intersect, mddnode_getright(na), mddnode_getright(nb)));
MDD down = CALL(lddmc_intersect, mddnode_getdown(na), mddnode_getdown(nb));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_intersect));
lddmc_refs_pop(1);
result = lddmc_makenode(na_value, down, right);
/* Write to cache */
if (cache_put3(CACHE_MDD_INTERSECT, a, b, 0, result)) sylvan_stats_count(LDD_INTERSECT_CACHEDPUT);
return result;
}
// proj: -1 (rest 0), 0 (no match), 1 (match)
TASK_IMPL_3(MDD, lddmc_match, MDD, a, MDD, b, MDD, proj)
{
if (a == b) return a;
if (a == lddmc_false || b == lddmc_false) return lddmc_false;
mddnode_t p_node = GETNODE(proj);
uint32_t p_val = mddnode_getvalue(p_node);
if (p_val == (uint32_t)-1) return a;
assert(a != lddmc_true);
if (p_val == 1) assert(b != lddmc_true);
/* Test gc */
sylvan_gc_test();
/* Skip nodes if possible */
if (p_val == 1) {
if (!match_ldds(&a, &b)) return lddmc_false;
}
sylvan_stats_count(LDD_MATCH);
/* Access cache */
MDD result;
if (cache_get3(CACHE_MDD_MATCH, a, b, proj, &result)) {
sylvan_stats_count(LDD_MATCH_CACHED);
return result;
}
/* Perform recursive calculation */
mddnode_t na = GETNODE(a);
MDD down;
if (p_val == 1) {
mddnode_t nb = GETNODE(b);
/* right = */ lddmc_refs_spawn(SPAWN(lddmc_match, mddnode_getright(na), mddnode_getright(nb), proj));
down = CALL(lddmc_match, mddnode_getdown(na), mddnode_getdown(nb), mddnode_getdown(p_node));
} else {
/* right = */ lddmc_refs_spawn(SPAWN(lddmc_match, mddnode_getright(na), b, proj));
down = CALL(lddmc_match, mddnode_getdown(na), b, mddnode_getdown(p_node));
}
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_match));
lddmc_refs_pop(1);
result = lddmc_makenode(mddnode_getvalue(na), down, right);
/* Write to cache */
if (cache_put3(CACHE_MDD_MATCH, a, b, proj, result)) sylvan_stats_count(LDD_MATCH_CACHEDPUT);
return result;
}
TASK_4(MDD, lddmc_relprod_help, uint32_t, val, MDD, set, MDD, rel, MDD, proj)
{
return lddmc_makenode(val, CALL(lddmc_relprod, set, rel, proj), lddmc_false);
}
// meta: -1 (end; rest not in rel), 0 (not in rel), 1 (read), 2 (write), 3 (only-read), 4 (only-write)
TASK_IMPL_3(MDD, lddmc_relprod, MDD, set, MDD, rel, MDD, meta)
{
if (set == lddmc_false) return lddmc_false;
if (rel == lddmc_false) return lddmc_false;
mddnode_t n_meta = GETNODE(meta);
uint32_t m_val = mddnode_getvalue(n_meta);
if (m_val == (uint32_t)-1) return set;
if (m_val != 0) assert(set != lddmc_true && rel != lddmc_true);
/* Skip nodes if possible */
if (!mddnode_getcopy(GETNODE(rel))) {
if (m_val == 1 || m_val == 3) {
if (!match_ldds(&set, &rel)) return lddmc_false;
}
}
/* Test gc */
sylvan_gc_test();
sylvan_stats_count(LDD_RELPROD);
/* Access cache */
MDD result;
if (cache_get3(CACHE_MDD_RELPROD, set, rel, meta, &result)) {
sylvan_stats_count(LDD_RELPROD_CACHED);
return result;
}
mddnode_t n_set = GETNODE(set);
mddnode_t n_rel = GETNODE(rel);
/* Recursive operations */
if (m_val == 0) { // not in rel
lddmc_refs_spawn(SPAWN(lddmc_relprod, mddnode_getright(n_set), rel, meta));
MDD down = CALL(lddmc_relprod, mddnode_getdown(n_set), rel, mddnode_getdown(n_meta));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_relprod));
lddmc_refs_pop(1);
result = lddmc_makenode(mddnode_getvalue(n_set), down, right);
} else if (m_val == 1) { // read
// read layer: if not copy, then set&rel are already matched
lddmc_refs_spawn(SPAWN(lddmc_relprod, set, mddnode_getright(n_rel), meta)); // spawn next read in list
// for this read, either it is copy ('for all') or it is normal match
if (mddnode_getcopy(n_rel)) {
// spawn for every value to copy (set)
int count = 0;
for (;;) {
// stay same level of set (for write)
lddmc_refs_spawn(SPAWN(lddmc_relprod, set, mddnode_getdown(n_rel), mddnode_getdown(n_meta)));
count++;
set = mddnode_getright(n_set);
if (set == lddmc_false) break;
n_set = GETNODE(set);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
} else {
// stay same level of set (for write)
result = CALL(lddmc_relprod, set, mddnode_getdown(n_rel), mddnode_getdown(n_meta));
}
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod)); // sync next read in list
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
} else if (m_val == 3) { // only-read
if (mddnode_getcopy(n_rel)) {
// copy on read ('for any value')
// result = union(result_with_copy, result_without_copy)
lddmc_refs_spawn(SPAWN(lddmc_relprod, set, mddnode_getright(n_rel), meta)); // spawn without_copy
// spawn for every value to copy (set)
int count = 0;
for (;;) {
lddmc_refs_spawn(SPAWN(lddmc_relprod_help, mddnode_getvalue(n_set), mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta)));
count++;
set = mddnode_getright(n_set);
if (set == lddmc_false) break;
n_set = GETNODE(set);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
// add result from without_copy
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
} else {
// only-read, without copy
lddmc_refs_spawn(SPAWN(lddmc_relprod, mddnode_getright(n_set), mddnode_getright(n_rel), meta));
MDD down = CALL(lddmc_relprod, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_relprod));
lddmc_refs_pop(1);
result = lddmc_makenode(mddnode_getvalue(n_set), down, right);
}
} else if (m_val == 2 || m_val == 4) { // write, only-write
if (m_val == 4) {
// only-write, so we need to include 'for all variables'
lddmc_refs_spawn(SPAWN(lddmc_relprod, mddnode_getright(n_set), rel, meta)); // next in set
}
// spawn for every value to write (rel)
int count = 0;
for (;;) {
uint32_t value;
if (mddnode_getcopy(n_rel)) value = mddnode_getvalue(n_set);
else value = mddnode_getvalue(n_rel);
lddmc_refs_spawn(SPAWN(lddmc_relprod_help, value, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta)));
count++;
rel = mddnode_getright(n_rel);
if (rel == lddmc_false) break;
n_rel = GETNODE(rel);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
if (m_val == 4) {
// sync+union with other variables
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
}
/* Write to cache */
if (cache_put3(CACHE_MDD_RELPROD, set, rel, meta, result)) sylvan_stats_count(LDD_RELPROD_CACHEDPUT);
return result;
}
TASK_5(MDD, lddmc_relprod_union_help, uint32_t, val, MDD, set, MDD, rel, MDD, proj, MDD, un)
{
return lddmc_makenode(val, CALL(lddmc_relprod_union, set, rel, proj, un), lddmc_false);
}
// meta: -1 (end; rest not in rel), 0 (not in rel), 1 (read), 2 (write), 3 (only-read), 4 (only-write)
TASK_IMPL_4(MDD, lddmc_relprod_union, MDD, set, MDD, rel, MDD, meta, MDD, un)
{
if (set == lddmc_false) return un;
if (rel == lddmc_false) return un;
if (un == lddmc_false) return CALL(lddmc_relprod, set, rel, meta);
mddnode_t n_meta = GETNODE(meta);
uint32_t m_val = mddnode_getvalue(n_meta);
if (m_val == (uint32_t)-1) return CALL(lddmc_union, set, un);
// check depths (this triggers on logic error)
if (m_val != 0) assert(set != lddmc_true && rel != lddmc_true && un != lddmc_true);
/* Skip nodes if possible */
if (!mddnode_getcopy(GETNODE(rel))) {
if (m_val == 1 || m_val == 3) {
if (!match_ldds(&set, &rel)) return un;
}
}
mddnode_t n_set = GETNODE(set);
mddnode_t n_rel = GETNODE(rel);
mddnode_t n_un = GETNODE(un);
// in some cases, we know un.value < result.value
if (m_val == 0 || m_val == 3) {
// if m_val == 0, no read/write, then un.value < set.value?
// if m_val == 3, only read (write same), then un.value < set.value?
uint32_t set_value = mddnode_getvalue(n_set);
uint32_t un_value = mddnode_getvalue(n_un);
if (un_value < set_value) {
MDD right = CALL(lddmc_relprod_union, set, rel, meta, mddnode_getright(n_un));
if (right == mddnode_getright(n_un)) return un;
else return lddmc_makenode(mddnode_getvalue(n_un), mddnode_getdown(n_un), right);
}
} else if (m_val == 2 || m_val == 4) {
// if we write, then we only know for certain that un.value < result.value if
// the root of rel is not a copy node
if (!mddnode_getcopy(n_rel)) {
uint32_t rel_value = mddnode_getvalue(n_rel);
uint32_t un_value = mddnode_getvalue(n_un);
if (un_value < rel_value) {
MDD right = CALL(lddmc_relprod_union, set, rel, meta, mddnode_getright(n_un));
if (right == mddnode_getright(n_un)) return un;
else return lddmc_makenode(mddnode_getvalue(n_un), mddnode_getdown(n_un), right);
}
}
}
/* Test gc */
sylvan_gc_test();
sylvan_stats_count(LDD_RELPROD_UNION);
/* Access cache */
MDD result;
if (cache_get4(CACHE_MDD_RELPROD, set, rel, meta, un, &result)) {
sylvan_stats_count(LDD_RELPROD_UNION_CACHED);
return result;
}
/* Recursive operations */
if (m_val == 0) { // not in rel
uint32_t set_value = mddnode_getvalue(n_set);
uint32_t un_value = mddnode_getvalue(n_un);
// set_value > un_value already checked above
if (set_value < un_value) {
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, mddnode_getright(n_set), rel, meta, un));
// going down, we don't need _union, since un does not contain this subtree
MDD down = CALL(lddmc_relprod, mddnode_getdown(n_set), rel, mddnode_getdown(n_meta));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_relprod_union));
lddmc_refs_pop(1);
if (down == lddmc_false) result = right;
else result = lddmc_makenode(mddnode_getvalue(n_set), down, right);
} else /* set_value == un_value */ {
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, mddnode_getright(n_set), rel, meta, mddnode_getright(n_un)));
MDD down = CALL(lddmc_relprod_union, mddnode_getdown(n_set), rel, mddnode_getdown(n_meta), mddnode_getdown(n_un));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_relprod_union));
lddmc_refs_pop(1);
if (right == mddnode_getright(n_un) && down == mddnode_getdown(n_un)) result = un;
else result = lddmc_makenode(mddnode_getvalue(n_set), down, right);
}
} else if (m_val == 1) { // read
// read layer: if not copy, then set&rel are already matched
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, set, mddnode_getright(n_rel), meta, un)); // spawn next read in list
// for this read, either it is copy ('for all') or it is normal match
if (mddnode_getcopy(n_rel)) {
// spawn for every value in set (copy = for all)
int count = 0;
for (;;) {
// stay same level of set and un (for write)
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, set, mddnode_getdown(n_rel), mddnode_getdown(n_meta), un));
count++;
set = mddnode_getright(n_set);
if (set == lddmc_false) break;
n_set = GETNODE(set);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_union));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
} else {
// stay same level of set and un (for write)
result = CALL(lddmc_relprod_union, set, mddnode_getdown(n_rel), mddnode_getdown(n_meta), un);
}
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_union)); // sync next read in list
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
} else if (m_val == 3) { // only-read
// un < set already checked above
if (mddnode_getcopy(n_rel)) {
// copy on read ('for any value')
// result = union(result_with_copy, result_without_copy)
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, set, mddnode_getright(n_rel), meta, un)); // spawn without_copy
// spawn for every value to copy (set)
int count = 0;
result = lddmc_false;
for (;;) {
uint32_t set_value = mddnode_getvalue(n_set);
uint32_t un_value = mddnode_getvalue(n_un);
if (un_value < set_value) {
// this is a bit tricky
// the result of this will simply be "un_value, mddnode_getdown(n_un), false" which is intended
lddmc_refs_spawn(SPAWN(lddmc_relprod_union_help, un_value, lddmc_false, lddmc_false, mddnode_getdown(n_meta), mddnode_getdown(n_un)));
count++;
un = mddnode_getright(n_un);
if (un == lddmc_false) {
result = CALL(lddmc_relprod, set, rel, meta);
break;
}
n_un = GETNODE(un);
} else if (un_value > set_value) {
// tricky again. the result of this is a normal relprod
lddmc_refs_spawn(SPAWN(lddmc_relprod_union_help, set_value, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), lddmc_false));
count++;
set = mddnode_getright(n_set);
if (set == lddmc_false) {
result = un;
break;
}
n_set = GETNODE(set);
} else /* un_value == set_value */ {
lddmc_refs_spawn(SPAWN(lddmc_relprod_union_help, set_value, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_un)));
count++;
set = mddnode_getright(n_set);
un = mddnode_getright(n_un);
if (set == lddmc_false) {
result = un;
break;
} else if (un == lddmc_false) {
result = CALL(lddmc_relprod, set, rel, meta);
break;
}
n_set = GETNODE(set);
n_un = GETNODE(un);
}
}
// sync+union (one by one)
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_union_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
// add result from without_copy
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_union));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
} else {
// only-read, not a copy node
uint32_t set_value = mddnode_getvalue(n_set);
uint32_t un_value = mddnode_getvalue(n_un);
// already did un_value < set_value
if (un_value > set_value) {
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, mddnode_getright(n_set), mddnode_getright(n_rel), meta, un));
MDD down = CALL(lddmc_relprod, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_relprod_union));
lddmc_refs_pop(1);
result = lddmc_makenode(mddnode_getvalue(n_set), down, right);
} else /* un_value == set_value */ {
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, mddnode_getright(n_set), mddnode_getright(n_rel), meta, mddnode_getright(n_un)));
MDD down = CALL(lddmc_relprod_union, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_un));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_relprod_union));
lddmc_refs_pop(1);
result = lddmc_makenode(mddnode_getvalue(n_set), down, right);
}
}
} else if (m_val == 2 || m_val == 4) { // write, only-write
if (m_val == 4) {
// only-write, so we need to include 'for all variables'
lddmc_refs_spawn(SPAWN(lddmc_relprod_union, mddnode_getright(n_set), rel, meta, un)); // next in set
}
// spawn for every value to write (rel)
int count = 0;
for (;;) {
uint32_t value;
if (mddnode_getcopy(n_rel)) value = mddnode_getvalue(n_set);
else value = mddnode_getvalue(n_rel);
uint32_t un_value = mddnode_getvalue(n_un);
if (un_value < value) {
// the result of this will simply be "un_value, mddnode_getdown(n_un), false" which is intended
lddmc_refs_spawn(SPAWN(lddmc_relprod_union_help, un_value, lddmc_false, lddmc_false, mddnode_getdown(n_meta), mddnode_getdown(n_un)));
count++;
un = mddnode_getright(n_un);
if (un == lddmc_false) {
result = CALL(lddmc_relprod, set, rel, meta);
break;
}
n_un = GETNODE(un);
} else if (un_value > value) {
lddmc_refs_spawn(SPAWN(lddmc_relprod_union_help, value, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), lddmc_false));
count++;
rel = mddnode_getright(n_rel);
if (rel == lddmc_false) {
result = un;
break;
}
n_rel = GETNODE(rel);
} else /* un_value == value */ {
lddmc_refs_spawn(SPAWN(lddmc_relprod_union_help, value, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_un)));
count++;
rel = mddnode_getright(n_rel);
un = mddnode_getright(n_un);
if (rel == lddmc_false) {
result = un;
break;
} else if (un == lddmc_false) {
result = CALL(lddmc_relprod, set, rel, meta);
break;
}
n_rel = GETNODE(rel);
n_un = GETNODE(un);
}
}
// sync+union (one by one)
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_union_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
if (m_val == 4) {
// sync+union with other variables
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprod_union));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
}
/* Write to cache */
if (cache_put4(CACHE_MDD_RELPROD, set, rel, meta, un, result)) sylvan_stats_count(LDD_RELPROD_UNION_CACHEDPUT);
return result;
}
TASK_5(MDD, lddmc_relprev_help, uint32_t, val, MDD, set, MDD, rel, MDD, proj, MDD, uni)
{
return lddmc_makenode(val, CALL(lddmc_relprev, set, rel, proj, uni), lddmc_false);
}
/**
* Calculate all predecessors to a in uni according to rel[meta]
* <meta> follows the same semantics as relprod
* i.e. 0 (not in rel), 1 (read), 2 (write), 3 (only-read), 4 (only-write), -1 (end; rest=0)
*/
TASK_IMPL_4(MDD, lddmc_relprev, MDD, set, MDD, rel, MDD, meta, MDD, uni)
{
if (set == lddmc_false) return lddmc_false;
if (rel == lddmc_false) return lddmc_false;
if (uni == lddmc_false) return lddmc_false;
mddnode_t n_meta = GETNODE(meta);
uint32_t m_val = mddnode_getvalue(n_meta);
if (m_val == (uint32_t)-1) {
if (set == uni) return set;
else return lddmc_intersect(set, uni);
}
if (m_val != 0) assert(set != lddmc_true && rel != lddmc_true && uni != lddmc_true);
/* Skip nodes if possible */
if (m_val == 0) {
// not in rel: match set and uni ('intersect')
if (!match_ldds(&set, &uni)) return lddmc_false;
} else if (mddnode_getcopy(GETNODE(rel))) {
// read+copy: no matching (pre is everything in uni)
// write+copy: no matching (match after split: set and uni)
// only-read+copy: match set and uni
// only-write+copy: no matching (match after split: set and uni)
if (m_val == 3) {
if (!match_ldds(&set, &uni)) return lddmc_false;
}
} else if (m_val == 1) {
// read: match uni and rel
if (!match_ldds(&uni, &rel)) return lddmc_false;
} else if (m_val == 2) {
// write: match set and rel
if (!match_ldds(&set, &rel)) return lddmc_false;
} else if (m_val == 3) {
// only-read: match uni and set and rel
mddnode_t n_set = GETNODE(set);
mddnode_t n_rel = GETNODE(rel);
mddnode_t n_uni = GETNODE(uni);
uint32_t n_set_value = mddnode_getvalue(n_set);
uint32_t n_rel_value = mddnode_getvalue(n_rel);
uint32_t n_uni_value = mddnode_getvalue(n_uni);
while (n_uni_value != n_rel_value || n_rel_value != n_set_value) {
if (n_uni_value < n_rel_value || n_uni_value < n_set_value) {
uni = mddnode_getright(n_uni);
if (uni == lddmc_false) return lddmc_false;
n_uni = GETNODE(uni);
n_uni_value = mddnode_getvalue(n_uni);
}
if (n_set_value < n_rel_value || n_set_value < n_uni_value) {
set = mddnode_getright(n_set);
if (set == lddmc_false) return lddmc_false;
n_set = GETNODE(set);
n_set_value = mddnode_getvalue(n_set);
}
if (n_rel_value < n_set_value || n_rel_value < n_uni_value) {
rel = mddnode_getright(n_rel);
if (rel == lddmc_false) return lddmc_false;
n_rel = GETNODE(rel);
n_rel_value = mddnode_getvalue(n_rel);
}
}
} else if (m_val == 4) {
// only-write: match set and rel (then use whole universe)
if (!match_ldds(&set, &rel)) return lddmc_false;
}
/* Test gc */
sylvan_gc_test();
sylvan_stats_count(LDD_RELPREV);
/* Access cache */
MDD result;
if (cache_get4(CACHE_MDD_RELPREV, set, rel, meta, uni, &result)) {
sylvan_stats_count(LDD_RELPREV_CACHED);
return result;
}
mddnode_t n_set = GETNODE(set);
mddnode_t n_rel = GETNODE(rel);
mddnode_t n_uni = GETNODE(uni);
/* Recursive operations */
if (m_val == 0) { // not in rel
// m_val == 0 : not in rel (intersection set and universe)
lddmc_refs_spawn(SPAWN(lddmc_relprev, mddnode_getright(n_set), rel, meta, mddnode_getright(n_uni)));
MDD down = CALL(lddmc_relprev, mddnode_getdown(n_set), rel, mddnode_getdown(n_meta), mddnode_getdown(n_uni));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_relprev));
lddmc_refs_pop(1);
result = lddmc_makenode(mddnode_getvalue(n_set), down, right);
} else if (m_val == 1) { // read level
// result value is in case of copy: everything in uni!
// result value is in case of not-copy: match uni and rel!
lddmc_refs_spawn(SPAWN(lddmc_relprev, set, mddnode_getright(n_rel), meta, uni)); // next in rel
if (mddnode_getcopy(n_rel)) {
// result is everything in uni
// spawn for every value to have been read (uni)
int count = 0;
for (;;) {
lddmc_refs_spawn(SPAWN(lddmc_relprev_help, mddnode_getvalue(n_uni), set, mddnode_getdown(n_rel), mddnode_getdown(n_meta), uni));
count++;
uni = mddnode_getright(n_uni);
if (uni == lddmc_false) break;
n_uni = GETNODE(uni);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
} else {
// already matched
MDD down = CALL(lddmc_relprev, set, mddnode_getdown(n_rel), mddnode_getdown(n_meta), uni);
result = lddmc_makenode(mddnode_getvalue(n_uni), down, lddmc_false);
}
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
} else if (m_val == 3) { // only-read level
// result value is in case of copy: match set and uni! (already done first match)
// result value is in case of not-copy: match set and uni and rel!
lddmc_refs_spawn(SPAWN(lddmc_relprev, set, mddnode_getright(n_rel), meta, uni)); // next in rel
if (mddnode_getcopy(n_rel)) {
// spawn for every matching set+uni
int count = 0;
for (;;) {
lddmc_refs_spawn(SPAWN(lddmc_relprev_help, mddnode_getvalue(n_uni), mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_uni)));
count++;
uni = mddnode_getright(n_uni);
if (!match_ldds(&set, &uni)) break;
n_set = GETNODE(set);
n_uni = GETNODE(uni);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
} else {
// already matched
MDD down = CALL(lddmc_relprev, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_uni));
result = lddmc_makenode(mddnode_getvalue(n_uni), down, lddmc_false);
}
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
} else if (m_val == 2) { // write level
// note: the read level has already matched the uni that was read.
// write+copy: only for the one set equal to uni...
// write: match set and rel (already done)
lddmc_refs_spawn(SPAWN(lddmc_relprev, set, mddnode_getright(n_rel), meta, uni));
if (mddnode_getcopy(n_rel)) {
MDD down = lddmc_follow(set, mddnode_getvalue(n_uni));
if (down != lddmc_false) {
result = CALL(lddmc_relprev, down, mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_uni));
} else {
result = lddmc_false;
}
} else {
result = CALL(lddmc_relprev, mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_uni));
}
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
} else if (m_val == 4) { // only-write level
// only-write+copy: match set and uni after spawn
// only-write: match set and rel (already done)
lddmc_refs_spawn(SPAWN(lddmc_relprev, set, mddnode_getright(n_rel), meta, uni));
if (mddnode_getcopy(n_rel)) {
// spawn for every matching set+uni
int count = 0;
for (;;) {
if (!match_ldds(&set, &uni)) break;
n_set = GETNODE(set);
n_uni = GETNODE(uni);
lddmc_refs_spawn(SPAWN(lddmc_relprev_help, mddnode_getvalue(n_uni), mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_uni)));
count++;
uni = mddnode_getright(n_uni);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
} else {
// spawn for every value in universe!!
int count = 0;
for (;;) {
lddmc_refs_spawn(SPAWN(lddmc_relprev_help, mddnode_getvalue(n_uni), mddnode_getdown(n_set), mddnode_getdown(n_rel), mddnode_getdown(n_meta), mddnode_getdown(n_uni)));
count++;
uni = mddnode_getright(n_uni);
if (uni == lddmc_false) break;
n_uni = GETNODE(uni);
}
// sync+union (one by one)
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev_help));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
}
lddmc_refs_push(result);
MDD result2 = lddmc_refs_sync(SYNC(lddmc_relprev));
lddmc_refs_push(result2);
result = CALL(lddmc_union, result, result2);
lddmc_refs_pop(2);
}
/* Write to cache */
if (cache_put4(CACHE_MDD_RELPREV, set, rel, meta, uni, result)) sylvan_stats_count(LDD_RELPREV_CACHEDPUT);
return result;
}
// Same 'proj' as project. So: proj: -2 (end; quantify rest), -1 (end; keep rest), 0 (quantify), 1 (keep)
TASK_IMPL_4(MDD, lddmc_join, MDD, a, MDD, b, MDD, a_proj, MDD, b_proj)
{
if (a == lddmc_false || b == lddmc_false) return lddmc_false;
/* Test gc */
sylvan_gc_test();
mddnode_t n_a_proj = GETNODE(a_proj);
mddnode_t n_b_proj = GETNODE(b_proj);
uint32_t a_proj_val = mddnode_getvalue(n_a_proj);
uint32_t b_proj_val = mddnode_getvalue(n_b_proj);
while (a_proj_val == 0 && b_proj_val == 0) {
a_proj = mddnode_getdown(n_a_proj);
b_proj = mddnode_getdown(n_b_proj);
n_a_proj = GETNODE(a_proj);
n_b_proj = GETNODE(b_proj);
a_proj_val = mddnode_getvalue(n_a_proj);
b_proj_val = mddnode_getvalue(n_b_proj);
}
if (a_proj_val == (uint32_t)-2) return b; // no a left
if (b_proj_val == (uint32_t)-2) return a; // no b left
if (a_proj_val == (uint32_t)-1 && b_proj_val == (uint32_t)-1) return CALL(lddmc_intersect, a, b);
// At this point, only proj_val {-1, 0, 1}; max one with -1; max one with 0.
const int keep_a = a_proj_val != 0;
const int keep_b = b_proj_val != 0;
if (keep_a && keep_b) {
// If both 'keep', then match values
if (!match_ldds(&a, &b)) return lddmc_false;
}
sylvan_stats_count(LDD_JOIN);
/* Access cache */
MDD result;
if (cache_get4(CACHE_MDD_JOIN, a, b, a_proj, b_proj, &result)) {
sylvan_stats_count(LDD_JOIN_CACHED);
return result;
}
/* Perform recursive calculation */
const mddnode_t na = GETNODE(a);
const mddnode_t nb = GETNODE(b);
uint32_t val;
MDD down;
// Make copies (for cache)
MDD _a_proj = a_proj, _b_proj = b_proj;
if (keep_a) {
if (keep_b) {
val = mddnode_getvalue(nb);
lddmc_refs_spawn(SPAWN(lddmc_join, mddnode_getright(na), mddnode_getright(nb), a_proj, b_proj));
if (a_proj_val != (uint32_t)-1) a_proj = mddnode_getdown(n_a_proj);
if (b_proj_val != (uint32_t)-1) b_proj = mddnode_getdown(n_b_proj);
down = CALL(lddmc_join, mddnode_getdown(na), mddnode_getdown(nb), a_proj, b_proj);
} else {
val = mddnode_getvalue(na);
lddmc_refs_spawn(SPAWN(lddmc_join, mddnode_getright(na), b, a_proj, b_proj));
if (a_proj_val != (uint32_t)-1) a_proj = mddnode_getdown(n_a_proj);
if (b_proj_val != (uint32_t)-1) b_proj = mddnode_getdown(n_b_proj);
down = CALL(lddmc_join, mddnode_getdown(na), b, a_proj, b_proj);
}
} else {
val = mddnode_getvalue(nb);
lddmc_refs_spawn(SPAWN(lddmc_join, a, mddnode_getright(nb), a_proj, b_proj));
if (a_proj_val != (uint32_t)-1) a_proj = mddnode_getdown(n_a_proj);
if (b_proj_val != (uint32_t)-1) b_proj = mddnode_getdown(n_b_proj);
down = CALL(lddmc_join, a, mddnode_getdown(nb), a_proj, b_proj);
}
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_join));
lddmc_refs_pop(1);
result = lddmc_makenode(val, down, right);
/* Write to cache */
if (cache_put4(CACHE_MDD_JOIN, a, b, _a_proj, _b_proj, result)) sylvan_stats_count(LDD_JOIN_CACHEDPUT);
return result;
}
// so: proj: -2 (end; quantify rest), -1 (end; keep rest), 0 (quantify), 1 (keep)
TASK_IMPL_2(MDD, lddmc_project, const MDD, mdd, const MDD, proj)
{
if (mdd == lddmc_false) return lddmc_false; // projection of empty is empty
if (mdd == lddmc_true) return lddmc_true; // projection of universe is universe...
mddnode_t p_node = GETNODE(proj);
uint32_t p_val = mddnode_getvalue(p_node);
if (p_val == (uint32_t)-1) return mdd;
if (p_val == (uint32_t)-2) return lddmc_true; // because we always end with true.
sylvan_gc_test();
sylvan_stats_count(LDD_PROJECT);
MDD result;
if (cache_get3(CACHE_MDD_PROJECT, mdd, proj, 0, &result)) {
sylvan_stats_count(LDD_PROJECT_CACHED);
return result;
}
mddnode_t n = GETNODE(mdd);
if (p_val == 1) { // keep
lddmc_refs_spawn(SPAWN(lddmc_project, mddnode_getright(n), proj));
MDD down = CALL(lddmc_project, mddnode_getdown(n), mddnode_getdown(p_node));
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_project));
lddmc_refs_pop(1);
result = lddmc_makenode(mddnode_getvalue(n), down, right);
} else { // quantify
if (mddnode_getdown(n) == lddmc_true) { // assume lowest level
result = lddmc_true;
} else {
int count = 0;
MDD p_down = mddnode_getdown(p_node), _mdd=mdd;
while (1) {
lddmc_refs_spawn(SPAWN(lddmc_project, mddnode_getdown(n), p_down));
count++;
_mdd = mddnode_getright(n);
assert(_mdd != lddmc_true);
if (_mdd == lddmc_false) break;
n = GETNODE(_mdd);
}
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD down = lddmc_refs_sync(SYNC(lddmc_project));
lddmc_refs_push(down);
result = CALL(lddmc_union, result, down);
lddmc_refs_pop(2);
}
}
}
if (cache_put3(CACHE_MDD_PROJECT, mdd, proj, 0, result)) sylvan_stats_count(LDD_PROJECT_CACHEDPUT);
return result;
}
// so: proj: -2 (end; quantify rest), -1 (end; keep rest), 0 (quantify), 1 (keep)
TASK_IMPL_3(MDD, lddmc_project_minus, const MDD, mdd, const MDD, proj, MDD, avoid)
{
// This implementation assumed "avoid" has correct depth
if (avoid == lddmc_true) return lddmc_false;
if (mdd == avoid) return lddmc_false;
if (mdd == lddmc_false) return lddmc_false; // projection of empty is empty
if (mdd == lddmc_true) return lddmc_true; // avoid != lddmc_true
mddnode_t p_node = GETNODE(proj);
uint32_t p_val = mddnode_getvalue(p_node);
if (p_val == (uint32_t)-1) return lddmc_minus(mdd, avoid);
if (p_val == (uint32_t)-2) return lddmc_true;
sylvan_gc_test();
sylvan_stats_count(LDD_PROJECT_MINUS);
MDD result;
if (cache_get3(CACHE_MDD_PROJECT, mdd, proj, avoid, &result)) {
sylvan_stats_count(LDD_PROJECT_MINUS_CACHED);
return result;
}
mddnode_t n = GETNODE(mdd);
if (p_val == 1) { // keep
// move 'avoid' until it matches
uint32_t val = mddnode_getvalue(n);
MDD a_down = lddmc_false;
while (avoid != lddmc_false) {
mddnode_t a_node = GETNODE(avoid);
uint32_t a_val = mddnode_getvalue(a_node);
if (a_val > val) {
break;
} else if (a_val == val) {
a_down = mddnode_getdown(a_node);
break;
}
avoid = mddnode_getright(a_node);
}
lddmc_refs_spawn(SPAWN(lddmc_project_minus, mddnode_getright(n), proj, avoid));
MDD down = CALL(lddmc_project_minus, mddnode_getdown(n), mddnode_getdown(p_node), a_down);
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_project_minus));
lddmc_refs_pop(1);
result = lddmc_makenode(val, down, right);
} else { // quantify
if (mddnode_getdown(n) == lddmc_true) { // assume lowest level
result = lddmc_true;
} else {
int count = 0;
MDD p_down = mddnode_getdown(p_node), _mdd=mdd;
while (1) {
lddmc_refs_spawn(SPAWN(lddmc_project_minus, mddnode_getdown(n), p_down, avoid));
count++;
_mdd = mddnode_getright(n);
assert(_mdd != lddmc_true);
if (_mdd == lddmc_false) break;
n = GETNODE(_mdd);
}
result = lddmc_false;
while (count--) {
lddmc_refs_push(result);
MDD down = lddmc_refs_sync(SYNC(lddmc_project_minus));
lddmc_refs_push(down);
result = CALL(lddmc_union, result, down);
lddmc_refs_pop(2);
}
}
}
if (cache_put3(CACHE_MDD_PROJECT, mdd, proj, avoid, result)) sylvan_stats_count(LDD_PROJECT_MINUS_CACHEDPUT);
return result;
}
MDD
lddmc_union_cube(MDD a, uint32_t* values, size_t count)
{
if (a == lddmc_false) return lddmc_cube(values, count);
if (a == lddmc_true) {
assert(count == 0);
return lddmc_true;
}
assert(count != 0);
mddnode_t na = GETNODE(a);
uint32_t na_value = mddnode_getvalue(na);
/* Only create a new node if something actually changed */
if (na_value < *values) {
MDD right = lddmc_union_cube(mddnode_getright(na), values, count);
if (right == mddnode_getright(na)) return a; // no actual change
return lddmc_makenode(na_value, mddnode_getdown(na), right);
} else if (na_value == *values) {
MDD down = lddmc_union_cube(mddnode_getdown(na), values+1, count-1);
if (down == mddnode_getdown(na)) return a; // no actual change
return lddmc_makenode(na_value, down, mddnode_getright(na));
} else /* na_value > *values */ {
return lddmc_makenode(*values, lddmc_cube(values+1, count-1), a);
}
}
MDD
lddmc_union_cube_copy(MDD a, uint32_t* values, int* copy, size_t count)
{
if (a == lddmc_false) return lddmc_cube_copy(values, copy, count);
if (a == lddmc_true) {
assert(count == 0);
return lddmc_true;
}
assert(count != 0);
mddnode_t na = GETNODE(a);
/* Only create a new node if something actually changed */
int na_copy = mddnode_getcopy(na);
if (na_copy && *copy) {
MDD down = lddmc_union_cube_copy(mddnode_getdown(na), values+1, copy+1, count-1);
if (down == mddnode_getdown(na)) return a; // no actual change
return lddmc_make_copynode(down, mddnode_getright(na));
} else if (na_copy) {
MDD right = lddmc_union_cube_copy(mddnode_getright(na), values, copy, count);
if (right == mddnode_getright(na)) return a; // no actual change
return lddmc_make_copynode(mddnode_getdown(na), right);
} else if (*copy) {
return lddmc_make_copynode(lddmc_cube_copy(values+1, copy+1, count-1), a);
}
uint32_t na_value = mddnode_getvalue(na);
if (na_value < *values) {
MDD right = lddmc_union_cube_copy(mddnode_getright(na), values, copy, count);
if (right == mddnode_getright(na)) return a; // no actual change
return lddmc_makenode(na_value, mddnode_getdown(na), right);
} else if (na_value == *values) {
MDD down = lddmc_union_cube_copy(mddnode_getdown(na), values+1, copy+1, count-1);
if (down == mddnode_getdown(na)) return a; // no actual change
return lddmc_makenode(na_value, down, mddnode_getright(na));
} else /* na_value > *values */ {
return lddmc_makenode(*values, lddmc_cube_copy(values+1, copy+1, count-1), a);
}
}
int
lddmc_member_cube(MDD a, uint32_t* values, size_t count)
{
while (1) {
if (a == lddmc_false) return 0;
if (a == lddmc_true) return 1;
assert(count > 0); // size mismatch
a = lddmc_follow(a, *values);
values++;
count--;
}
}
int
lddmc_member_cube_copy(MDD a, uint32_t* values, int* copy, size_t count)
{
while (1) {
if (a == lddmc_false) return 0;
if (a == lddmc_true) return 1;
assert(count > 0); // size mismatch
if (*copy) a = lddmc_followcopy(a);
else a = lddmc_follow(a, *values);
values++;
count--;
}
}
MDD
lddmc_cube(uint32_t* values, size_t count)
{
if (count == 0) return lddmc_true;
return lddmc_makenode(*values, lddmc_cube(values+1, count-1), lddmc_false);
}
MDD
lddmc_cube_copy(uint32_t* values, int* copy, size_t count)
{
if (count == 0) return lddmc_true;
if (*copy) return lddmc_make_copynode(lddmc_cube_copy(values+1, copy+1, count-1), lddmc_false);
else return lddmc_makenode(*values, lddmc_cube_copy(values+1, copy+1, count-1), lddmc_false);
}
/**
* Count number of nodes for each level
*/
static void
lddmc_nodecount_levels_mark(MDD mdd, size_t *variables)
{
if (mdd <= lddmc_true) return;
mddnode_t n = GETNODE(mdd);
if (!mddnode_getmark(n)) {
mddnode_setmark(n, 1);
(*variables) += 1;
lddmc_nodecount_levels_mark(mddnode_getright(n), variables);
lddmc_nodecount_levels_mark(mddnode_getdown(n), variables+1);
}
}
static void
lddmc_nodecount_levels_unmark(MDD mdd)
{
if (mdd <= lddmc_true) return;
mddnode_t n = GETNODE(mdd);
if (mddnode_getmark(n)) {
mddnode_setmark(n, 0);
lddmc_nodecount_levels_unmark(mddnode_getright(n));
lddmc_nodecount_levels_unmark(mddnode_getdown(n));
}
}
void
lddmc_nodecount_levels(MDD mdd, size_t *variables)
{
lddmc_nodecount_levels_mark(mdd, variables);
lddmc_nodecount_levels_unmark(mdd);
}
/**
* Count number of nodes in MDD
*/
static size_t
lddmc_nodecount_mark(MDD mdd)
{
if (mdd <= lddmc_true) return 0;
mddnode_t n = GETNODE(mdd);
if (mddnode_getmark(n)) return 0;
mddnode_setmark(n, 1);
return 1 + lddmc_nodecount_mark(mddnode_getdown(n)) + lddmc_nodecount_mark(mddnode_getright(n));
}
static void
lddmc_nodecount_unmark(MDD mdd)
{
if (mdd <= lddmc_true) return;
mddnode_t n = GETNODE(mdd);
if (mddnode_getmark(n)) {
mddnode_setmark(n, 0);
lddmc_nodecount_unmark(mddnode_getright(n));
lddmc_nodecount_unmark(mddnode_getdown(n));
}
}
size_t
lddmc_nodecount(MDD mdd)
{
size_t result = lddmc_nodecount_mark(mdd);
lddmc_nodecount_unmark(mdd);
return result;
}
/**
* CALCULATE NUMBER OF VAR ASSIGNMENTS THAT YIELD TRUE
*/
TASK_IMPL_1(lddmc_satcount_double_t, lddmc_satcount_cached, MDD, mdd)
{
if (mdd == lddmc_false) return 0.0;
if (mdd == lddmc_true) return 1.0;
/* Perhaps execute garbage collection */
sylvan_gc_test();
union {
lddmc_satcount_double_t d;
uint64_t s;
} hack;
sylvan_stats_count(LDD_SATCOUNT);
if (cache_get3(CACHE_MDD_SATCOUNT, mdd, 0, 0, &hack.s)) {
sylvan_stats_count(LDD_SATCOUNT_CACHED);
return hack.d;
}
mddnode_t n = GETNODE(mdd);
SPAWN(lddmc_satcount_cached, mddnode_getdown(n));
lddmc_satcount_double_t right = CALL(lddmc_satcount_cached, mddnode_getright(n));
hack.d = right + SYNC(lddmc_satcount_cached);
if (cache_put3(CACHE_MDD_SATCOUNT, mdd, 0, 0, hack.s)) sylvan_stats_count(LDD_SATCOUNT_CACHEDPUT);
return hack.d;
}
TASK_IMPL_1(long double, lddmc_satcount, MDD, mdd)
{
if (mdd == lddmc_false) return 0.0;
if (mdd == lddmc_true) return 1.0;
/* Perhaps execute garbage collection */
sylvan_gc_test();
sylvan_stats_count(LDD_SATCOUNTL);
union {
long double d;
struct {
uint64_t s1;
uint64_t s2;
} s;
} hack;
if (cache_get3(CACHE_MDD_SATCOUNTL1, mdd, 0, 0, &hack.s.s1) &&
cache_get3(CACHE_MDD_SATCOUNTL2, mdd, 0, 0, &hack.s.s2)) {
sylvan_stats_count(LDD_SATCOUNTL_CACHED);
return hack.d;
}
mddnode_t n = GETNODE(mdd);
SPAWN(lddmc_satcount, mddnode_getdown(n));
long double right = CALL(lddmc_satcount, mddnode_getright(n));
hack.d = right + SYNC(lddmc_satcount);
int c1 = cache_put3(CACHE_MDD_SATCOUNTL1, mdd, 0, 0, hack.s.s1);
int c2 = cache_put3(CACHE_MDD_SATCOUNTL2, mdd, 0, 0, hack.s.s2);
if (c1 && c2) sylvan_stats_count(LDD_SATCOUNTL_CACHEDPUT);
return hack.d;
}
TASK_IMPL_5(MDD, lddmc_collect, MDD, mdd, lddmc_collect_cb, cb, void*, context, uint32_t*, values, size_t, count)
{
if (mdd == lddmc_false) return lddmc_false;
if (mdd == lddmc_true) {
return WRAP(cb, values, count, context);
}
mddnode_t n = GETNODE(mdd);
lddmc_refs_spawn(SPAWN(lddmc_collect, mddnode_getright(n), cb, context, values, count));
uint32_t newvalues[count+1];
if (count > 0) memcpy(newvalues, values, sizeof(uint32_t)*count);
newvalues[count] = mddnode_getvalue(n);
MDD down = CALL(lddmc_collect, mddnode_getdown(n), cb, context, newvalues, count+1);
if (down == lddmc_false) {
MDD result = lddmc_refs_sync(SYNC(lddmc_collect));
return result;
}
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_collect));
if (right == lddmc_false) {
lddmc_refs_pop(1);
return down;
} else {
lddmc_refs_push(right);
MDD result = CALL(lddmc_union, down, right);
lddmc_refs_pop(2);
return result;
}
}
VOID_TASK_5(_lddmc_sat_all_nopar, MDD, mdd, lddmc_enum_cb, cb, void*, context, uint32_t*, values, size_t, count)
{
if (mdd == lddmc_false) return;
if (mdd == lddmc_true) {
WRAP(cb, values, count, context);
return;
}
mddnode_t n = GETNODE(mdd);
values[count] = mddnode_getvalue(n);
CALL(_lddmc_sat_all_nopar, mddnode_getdown(n), cb, context, values, count+1);
CALL(_lddmc_sat_all_nopar, mddnode_getright(n), cb, context, values, count);
}
VOID_TASK_IMPL_3(lddmc_sat_all_nopar, MDD, mdd, lddmc_enum_cb, cb, void*, context)
{
// determine depth
size_t count=0;
MDD _mdd = mdd;
while (_mdd > lddmc_true) {
_mdd = mddnode_getdown(GETNODE(_mdd));
assert(_mdd != lddmc_false);
count++;
}
uint32_t values[count];
CALL(_lddmc_sat_all_nopar, mdd, cb, context, values, 0);
}
VOID_TASK_IMPL_5(lddmc_sat_all_par, MDD, mdd, lddmc_enum_cb, cb, void*, context, uint32_t*, values, size_t, count)
{
if (mdd == lddmc_false) return;
if (mdd == lddmc_true) {
WRAP(cb, values, count, context);
return;
}
mddnode_t n = GETNODE(mdd);
SPAWN(lddmc_sat_all_par, mddnode_getright(n), cb, context, values, count);
uint32_t newvalues[count+1];
if (count > 0) memcpy(newvalues, values, sizeof(uint32_t)*count);
newvalues[count] = mddnode_getvalue(n);
CALL(lddmc_sat_all_par, mddnode_getdown(n), cb, context, newvalues, count+1);
SYNC(lddmc_sat_all_par);
}
struct lddmc_match_sat_info
{
MDD mdd;
MDD match;
MDD proj;
size_t count;
uint32_t values[0];
};
// proj: -1 (rest 0), 0 (no match), 1 (match)
VOID_TASK_3(lddmc_match_sat, struct lddmc_match_sat_info *, info, lddmc_enum_cb, cb, void*, context)
{
MDD a = info->mdd, b = info->match, proj = info->proj;
if (a == lddmc_false || b == lddmc_false) return;
if (a == lddmc_true) {
assert(b == lddmc_true);
WRAP(cb, info->values, info->count, context);
return;
}
mddnode_t p_node = GETNODE(proj);
uint32_t p_val = mddnode_getvalue(p_node);
if (p_val == (uint32_t)-1) {
assert(b == lddmc_true);
CALL(lddmc_sat_all_par, a, cb, context, info->values, info->count);
return;
}
/* Get nodes */
mddnode_t na = GETNODE(a);
mddnode_t nb = GETNODE(b);
uint32_t na_value = mddnode_getvalue(na);
uint32_t nb_value = mddnode_getvalue(nb);
/* Skip nodes if possible */
if (p_val == 1) {
while (na_value != nb_value) {
if (na_value < nb_value) {
a = mddnode_getright(na);
if (a == lddmc_false) return;
na = GETNODE(a);
na_value = mddnode_getvalue(na);
}
if (nb_value < na_value) {
b = mddnode_getright(nb);
if (b == lddmc_false) return;
nb = GETNODE(b);
nb_value = mddnode_getvalue(nb);
}
}
}
struct lddmc_match_sat_info *ri = (struct lddmc_match_sat_info*)alloca(sizeof(struct lddmc_match_sat_info)+sizeof(uint32_t[info->count]));
struct lddmc_match_sat_info *di = (struct lddmc_match_sat_info*)alloca(sizeof(struct lddmc_match_sat_info)+sizeof(uint32_t[info->count+1]));
ri->mdd = mddnode_getright(na);
di->mdd = mddnode_getdown(na);
ri->match = b;
di->match = mddnode_getdown(nb);
ri->proj = proj;
di->proj = mddnode_getdown(p_node);
ri->count = info->count;
di->count = info->count+1;
if (ri->count > 0) memcpy(ri->values, info->values, sizeof(uint32_t[info->count]));
if (di->count > 0) memcpy(di->values, info->values, sizeof(uint32_t[info->count]));
di->values[info->count] = na_value;
SPAWN(lddmc_match_sat, ri, cb, context);
CALL(lddmc_match_sat, di, cb, context);
SYNC(lddmc_match_sat);
}
VOID_TASK_IMPL_5(lddmc_match_sat_par, MDD, mdd, MDD, match, MDD, proj, lddmc_enum_cb, cb, void*, context)
{
struct lddmc_match_sat_info i;
i.mdd = mdd;
i.match = match;
i.proj = proj;
i.count = 0;
CALL(lddmc_match_sat, &i, cb, context);
}
int
lddmc_sat_one(MDD mdd, uint32_t* values, size_t count)
{
if (mdd == lddmc_false) return 0;
if (mdd == lddmc_true) return 1;
assert(count != 0);
mddnode_t n = GETNODE(mdd);
*values = mddnode_getvalue(n);
return lddmc_sat_one(mddnode_getdown(n), values+1, count-1);
}
MDD
lddmc_sat_one_mdd(MDD mdd)
{
if (mdd == lddmc_false) return lddmc_false;
if (mdd == lddmc_true) return lddmc_true;
mddnode_t n = GETNODE(mdd);
MDD down = lddmc_sat_one_mdd(mddnode_getdown(n));
return lddmc_makenode(mddnode_getvalue(n), down, lddmc_false);
}
TASK_IMPL_4(MDD, lddmc_compose, MDD, mdd, lddmc_compose_cb, cb, void*, context, int, depth)
{
if (depth == 0 || mdd == lddmc_false || mdd == lddmc_true) {
return WRAP(cb, mdd, context);
} else {
mddnode_t n = GETNODE(mdd);
lddmc_refs_spawn(SPAWN(lddmc_compose, mddnode_getright(n), cb, context, depth));
MDD down = lddmc_compose(mddnode_getdown(n), cb, context, depth-1);
lddmc_refs_push(down);
MDD right = lddmc_refs_sync(SYNC(lddmc_compose));
lddmc_refs_pop(1);
return lddmc_makenode(mddnode_getvalue(n), down, right);
}
}
VOID_TASK_IMPL_4(lddmc_visit_seq, MDD, mdd, lddmc_visit_callbacks_t*, cbs, size_t, ctx_size, void*, context)
{
if (WRAP(cbs->lddmc_visit_pre, mdd, context) == 0) return;
void* context_down = alloca(ctx_size);
void* context_right = alloca(ctx_size);
WRAP(cbs->lddmc_visit_init_context, context_down, context, 1);
WRAP(cbs->lddmc_visit_init_context, context_right, context, 0);
CALL(lddmc_visit_seq, mddnode_getdown(GETNODE(mdd)), cbs, ctx_size, context_down);
CALL(lddmc_visit_seq, mddnode_getright(GETNODE(mdd)), cbs, ctx_size, context_right);
WRAP(cbs->lddmc_visit_post, mdd, context);
}
VOID_TASK_IMPL_4(lddmc_visit_par, MDD, mdd, lddmc_visit_callbacks_t*, cbs, size_t, ctx_size, void*, context)
{
if (WRAP(cbs->lddmc_visit_pre, mdd, context) == 0) return;
void* context_down = alloca(ctx_size);
void* context_right = alloca(ctx_size);
WRAP(cbs->lddmc_visit_init_context, context_down, context, 1);
WRAP(cbs->lddmc_visit_init_context, context_right, context, 0);
SPAWN(lddmc_visit_par, mddnode_getdown(GETNODE(mdd)), cbs, ctx_size, context_down);
CALL(lddmc_visit_par, mddnode_getright(GETNODE(mdd)), cbs, ctx_size, context_right);
SYNC(lddmc_visit_par);
WRAP(cbs->lddmc_visit_post, mdd, context);
}
/**
* GENERIC MARK/UNMARK METHODS
*/
static inline int
lddmc_mark(mddnode_t node)
{
if (mddnode_getmark(node)) return 0;
mddnode_setmark(node, 1);
return 1;
}
static inline int
lddmc_unmark(mddnode_t node)
{
if (mddnode_getmark(node)) {
mddnode_setmark(node, 0);
return 1;
} else {
return 0;
}
}
static void
lddmc_unmark_rec(mddnode_t node)
{
if (lddmc_unmark(node)) {
MDD node_right = mddnode_getright(node);
if (node_right > lddmc_true) lddmc_unmark_rec(GETNODE(node_right));
MDD node_down = mddnode_getdown(node);
if (node_down > lddmc_true) lddmc_unmark_rec(GETNODE(node_down));
}
}
/*************
* DOT OUTPUT
*************/
static void
lddmc_fprintdot_rec(FILE* out, MDD mdd)
{
// assert(mdd > lddmc_true);
// check mark
mddnode_t n = GETNODE(mdd);
if (mddnode_getmark(n)) return;
mddnode_setmark(n, 1);
// print the node
uint32_t val = mddnode_getvalue(n);
fprintf(out, "%" PRIu64 " [shape=record, label=\"", mdd);
if (mddnode_getcopy(n)) fprintf(out, "<c> *");
else fprintf(out, "<%u> %u", val, val);
MDD right = mddnode_getright(n);
while (right != lddmc_false) {
mddnode_t n2 = GETNODE(right);
uint32_t val2 = mddnode_getvalue(n2);
fprintf(out, "|<%u> %u", val2, val2);
right = mddnode_getright(n2);
// assert(right != lddmc_true);
}
fprintf(out, "\"];\n");
// recurse and print the edges
for (;;) {
MDD down = mddnode_getdown(n);
// assert(down != lddmc_false);
if (down > lddmc_true) {
lddmc_fprintdot_rec(out, down);
if (mddnode_getcopy(n)) {
fprintf(out, "%" PRIu64 ":c -> ", mdd);
} else {
fprintf(out, "%" PRIu64 ":%u -> ", mdd, mddnode_getvalue(n));
}
if (mddnode_getcopy(GETNODE(down))) {
fprintf(out, "%" PRIu64 ":c [style=solid];\n", down);
} else {
fprintf(out, "%" PRIu64 ":%u [style=solid];\n", down, mddnode_getvalue(GETNODE(down)));
}
}
MDD right = mddnode_getright(n);
if (right == lddmc_false) break;
n = GETNODE(right);
}
}
static void
lddmc_fprintdot_unmark(MDD mdd)
{
if (mdd <= lddmc_true) return;
mddnode_t n = GETNODE(mdd);
if (mddnode_getmark(n)) {
mddnode_setmark(n, 0);
for (;;) {
lddmc_fprintdot_unmark(mddnode_getdown(n));
mdd = mddnode_getright(n);
if (mdd == lddmc_false) return;
n = GETNODE(mdd);
}
}
}
void
lddmc_fprintdot(FILE *out, MDD mdd)
{
fprintf(out, "digraph \"DD\" {\n");
fprintf(out, "graph [dpi = 300];\n");
fprintf(out, "center = true;\n");
fprintf(out, "edge [dir = forward];\n");
// Special case: false
if (mdd == lddmc_false) {
fprintf(out, "0 [shape=record, label=\"False\"];\n");
fprintf(out, "}\n");
return;
}
// Special case: true
if (mdd == lddmc_true) {
fprintf(out, "1 [shape=record, label=\"True\"];\n");
fprintf(out, "}\n");
return;
}
lddmc_fprintdot_rec(out, mdd);
lddmc_fprintdot_unmark(mdd);
fprintf(out, "}\n");
}
void
lddmc_printdot(MDD mdd)
{
lddmc_fprintdot(stdout, mdd);
}
/**
* Some debug stuff
*/
void
lddmc_fprint(FILE *f, MDD mdd)
{
lddmc_serialize_reset();
size_t v = lddmc_serialize_add(mdd);
fprintf(f, "%zu,", v);
lddmc_serialize_totext(f);
}
void
lddmc_print(MDD mdd)
{
lddmc_fprint(stdout, mdd);
}
/**
* SERIALIZATION
*/
struct lddmc_ser {
MDD mdd;
size_t assigned;
};
// Define a AVL tree type with prefix 'lddmc_ser' holding
// nodes of struct lddmc_ser with the following compare() function...
AVL(lddmc_ser, struct lddmc_ser)
{
if (left->mdd > right->mdd) return 1;
if (left->mdd < right->mdd) return -1;
return 0;
}
// Define a AVL tree type with prefix 'lddmc_ser_reversed' holding
// nodes of struct lddmc_ser with the following compare() function...
AVL(lddmc_ser_reversed, struct lddmc_ser)
{
if (left->assigned > right->assigned) return 1;
if (left->assigned < right->assigned) return -1;
return 0;
}
// Initially, both sets are empty
static avl_node_t *lddmc_ser_set = NULL;
static avl_node_t *lddmc_ser_reversed_set = NULL;
// Start counting (assigning numbers to MDDs) at 2
static volatile size_t lddmc_ser_counter = 2;
static size_t lddmc_ser_done = 0;
// Given a MDD, assign unique numbers to all nodes
static size_t
lddmc_serialize_assign_rec(MDD mdd)
{
if (mdd <= lddmc_true) return mdd;
mddnode_t n = GETNODE(mdd);
struct lddmc_ser s, *ss;
s.mdd = mdd;
ss = lddmc_ser_search(lddmc_ser_set, &s);
if (ss == NULL) {
// assign dummy value
s.assigned = 0;
ss = lddmc_ser_put(&lddmc_ser_set, &s, NULL);
// first assign recursively
lddmc_serialize_assign_rec(mddnode_getright(n));
lddmc_serialize_assign_rec(mddnode_getdown(n));
// assign real value
ss->assigned = lddmc_ser_counter++;
// put a copy in the reversed table
lddmc_ser_reversed_insert(&lddmc_ser_reversed_set, ss);
}
return ss->assigned;
}
size_t
lddmc_serialize_add(MDD mdd)
{
return lddmc_serialize_assign_rec(mdd);
}
void
lddmc_serialize_reset()
{
lddmc_ser_free(&lddmc_ser_set);
lddmc_ser_free(&lddmc_ser_reversed_set);
lddmc_ser_counter = 2;
lddmc_ser_done = 0;
}
size_t
lddmc_serialize_get(MDD mdd)
{
if (mdd <= lddmc_true) return mdd;
struct lddmc_ser s, *ss;
s.mdd = mdd;
ss = lddmc_ser_search(lddmc_ser_set, &s);
assert(ss != NULL);
return ss->assigned;
}
MDD
lddmc_serialize_get_reversed(size_t value)
{
if ((MDD)value <= lddmc_true) return (MDD)value;
struct lddmc_ser s, *ss;
s.assigned = value;
ss = lddmc_ser_reversed_search(lddmc_ser_reversed_set, &s);
assert(ss != NULL);
return ss->mdd;
}
void
lddmc_serialize_totext(FILE *out)
{
avl_iter_t *it = lddmc_ser_reversed_iter(lddmc_ser_reversed_set);
struct lddmc_ser *s;
fprintf(out, "[");
while ((s=lddmc_ser_reversed_iter_next(it))) {
MDD mdd = s->mdd;
mddnode_t n = GETNODE(mdd);
fprintf(out, "(%zu,v=%u,d=%zu,r=%zu),", s->assigned,
mddnode_getvalue(n),
lddmc_serialize_get(mddnode_getdown(n)),
lddmc_serialize_get(mddnode_getright(n)));
}
fprintf(out, "]");
lddmc_ser_reversed_iter_free(it);
}
void
lddmc_serialize_tofile(FILE *out)
{
size_t count = avl_count(lddmc_ser_reversed_set);
assert(count >= lddmc_ser_done);
assert(count == lddmc_ser_counter-2);
count -= lddmc_ser_done;
fwrite(&count, sizeof(size_t), 1, out);
struct lddmc_ser *s;
avl_iter_t *it = lddmc_ser_reversed_iter(lddmc_ser_reversed_set);
/* Skip already written entries */
size_t index = 0;
while (index < lddmc_ser_done && (s=lddmc_ser_reversed_iter_next(it))) {
assert(s->assigned == index+2);
index++;
}
while ((s=lddmc_ser_reversed_iter_next(it))) {
assert(s->assigned == index+2);
index++;
mddnode_t n = GETNODE(s->mdd);
struct mddnode node;
uint64_t right = lddmc_serialize_get(mddnode_getright(n));
uint64_t down = lddmc_serialize_get(mddnode_getdown(n));
if (mddnode_getcopy(n)) mddnode_makecopy(&node, right, down);
else mddnode_make(&node, mddnode_getvalue(n), right, down);
assert(right <= index);
assert(down <= index);
fwrite(&node, sizeof(struct mddnode), 1, out);
}
lddmc_ser_done = lddmc_ser_counter-2;
lddmc_ser_reversed_iter_free(it);
}
void
lddmc_serialize_fromfile(FILE *in)
{
size_t count, i;
if (fread(&count, sizeof(size_t), 1, in) != 1) {
// TODO FIXME return error
printf("sylvan_serialize_fromfile: file format error, giving up\n");
exit(-1);
}
for (i=1; i<=count; i++) {
struct mddnode node;
if (fread(&node, sizeof(struct mddnode), 1, in) != 1) {
// TODO FIXME return error
printf("sylvan_serialize_fromfile: file format error, giving up\n");
exit(-1);
}
assert(mddnode_getright(&node) <= lddmc_ser_done+1);
assert(mddnode_getdown(&node) <= lddmc_ser_done+1);
MDD right = lddmc_serialize_get_reversed(mddnode_getright(&node));
MDD down = lddmc_serialize_get_reversed(mddnode_getdown(&node));
struct lddmc_ser s;
if (mddnode_getcopy(&node)) s.mdd = lddmc_make_copynode(down, right);
else s.mdd = lddmc_makenode(mddnode_getvalue(&node), down, right);
s.assigned = lddmc_ser_done+2; // starts at 0 but we want 2-based...
lddmc_ser_done++;
lddmc_ser_insert(&lddmc_ser_set, &s);
lddmc_ser_reversed_insert(&lddmc_ser_reversed_set, &s);
}
}
static void
lddmc_sha2_rec(MDD mdd, SHA256_CTX *ctx)
{
if (mdd <= lddmc_true) {
SHA256_Update(ctx, (void*)&mdd, sizeof(uint64_t));
return;
}
mddnode_t node = GETNODE(mdd);
if (lddmc_mark(node)) {
uint32_t val = mddnode_getvalue(node);
SHA256_Update(ctx, (void*)&val, sizeof(uint32_t));
lddmc_sha2_rec(mddnode_getdown(node), ctx);
lddmc_sha2_rec(mddnode_getright(node), ctx);
}
}
void
lddmc_printsha(MDD mdd)
{
lddmc_fprintsha(stdout, mdd);
}
void
lddmc_fprintsha(FILE *out, MDD mdd)
{
char buf[80];
lddmc_getsha(mdd, buf);
fprintf(out, "%s", buf);
}
void
lddmc_getsha(MDD mdd, char *target)
{
SHA256_CTX ctx;
SHA256_Init(&ctx);
lddmc_sha2_rec(mdd, &ctx);
if (mdd > lddmc_true) lddmc_unmark_rec(GETNODE(mdd));
SHA256_End(&ctx, target);
}
#ifndef NDEBUG
size_t
lddmc_test_ismdd(MDD mdd)
{
if (mdd == lddmc_true) return 1;
if (mdd == lddmc_false) return 0;
int first = 1;
size_t depth = 0;
if (mdd != lddmc_false) {
mddnode_t n = GETNODE(mdd);
if (mddnode_getcopy(n)) {
mdd = mddnode_getright(n);
depth = lddmc_test_ismdd(mddnode_getdown(n));
assert(depth >= 1);
}
}
uint32_t value = 0;
while (mdd != lddmc_false) {
assert(llmsset_is_marked(nodes, mdd));
mddnode_t n = GETNODE(mdd);
uint32_t next_value = mddnode_getvalue(n);
assert(mddnode_getcopy(n) == 0);
if (first) {
first = 0;
depth = lddmc_test_ismdd(mddnode_getdown(n));
assert(depth >= 1);
} else {
assert(value < next_value);
assert(depth == lddmc_test_ismdd(mddnode_getdown(n)));
}
value = next_value;
mdd = mddnode_getright(n);
}
return 1 + depth;
}
#endif