You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

164 lines
16 KiB

#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
#include "src/utility/constants.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h"
#include "src/solver/LpSolver.h"
#include "src/settings/modules/GeneralSettings.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/storage/expressions/Expressions.h"
#include "src/storage/MaximalEndComponentDecomposition.h"
#include "src/exceptions/InvalidArgumentException.h"
namespace storm {
namespace modelchecker {
template<typename SparseMdpModelType>
SparseMdpPrctlModelChecker<SparseMdpModelType>::SparseMdpPrctlModelChecker(SparseMdpModelType const& model) : SparsePropositionalModelChecker<SparseMdpModelType>(model), minMaxLinearEquationSolverFactory(new storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>()) {
// Intentionally left empty.
}
template<typename SparseMdpModelType>
SparseMdpPrctlModelChecker<SparseMdpModelType>::SparseMdpPrctlModelChecker(SparseMdpModelType const& model, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>>&& minMaxLinearEquationSolverFactory) : SparsePropositionalModelChecker<SparseMdpModelType>(model), minMaxLinearEquationSolverFactory(std::move(minMaxLinearEquationSolverFactory)) {
// Intentionally left empty.
}
template<typename SparseMdpModelType>
bool SparseMdpPrctlModelChecker<SparseMdpModelType>::canHandle(CheckTask<storm::logic::Formula> const& checkTask) const {
storm::logic::Formula const& formula = checkTask.getFormula();
if (formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula()) {
return true;
}
if (formula.isProbabilityOperatorFormula()) {
return this->canHandle(checkTask.replaceFormula(formula.asProbabilityOperatorFormula().getSubformula()));
}
if (formula.isGloballyFormula()) {
return true;
}
if (formula.isConditionalPathFormula()) {
storm::logic::ConditionalPathFormula const& conditionalPathFormula = formula.asConditionalPathFormula();
if (conditionalPathFormula.getLeftSubformula().isEventuallyFormula() && conditionalPathFormula.getRightSubformula().isEventuallyFormula()) {
return this->canHandle(conditionalPathFormula.getLeftSubformula()) && this->canHandle(conditionalPathFormula.getRightSubformula());
}
}
return false;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeBoundedUntilProbabilities(CheckTask<storm::logic::BoundedUntilFormula> const& checkTask) {
storm::logic::BoundedUntilFormula const& pathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeBoundedUntilProbabilities(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeNextProbabilities(CheckTask<storm::logic::NextFormula> const& checkTask) {
storm::logic::NextFormula const& pathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeNextProbabilities(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeUntilProbabilities(CheckTask<storm::logic::UntilFormula> const& checkTask) {
storm::logic::UntilFormula const& pathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), checkTask.isQualitativeSet(), checkTask.isProduceSchedulersSet(), *minMaxLinearEquationSolverFactory);
std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values)));
if (checkTask.isProduceSchedulersSet() && ret.scheduler) {
result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler));
}
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeGloballyProbabilities(CheckTask<storm::logic::GloballyFormula> const& checkTask) {
storm::logic::GloballyFormula const& pathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeGloballyProbabilities(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), checkTask.isQualitativeSet(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeConditionalProbabilities(CheckTask<storm::logic::ConditionalPathFormula> const& checkTask) {
storm::logic::ConditionalPathFormula const& pathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(this->getModel().getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::InvalidPropertyException, "Cannot compute conditional probabilities on MDPs with more than one initial state.");
STORM_LOG_THROW(pathFormula.getLeftSubformula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Illegal conditional probability formula.");
STORM_LOG_THROW(pathFormula.getRightSubformula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Illegal conditional probability formula.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula().asEventuallyFormula().getSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula().asEventuallyFormula().getSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
return storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeConditionalProbabilities(checkTask.getOptimizationDirection(), *this->getModel().getInitialStates().begin(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), checkTask.isQualitativeSet(), *minMaxLinearEquationSolverFactory);
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeCumulativeRewards(CheckTask<storm::logic::CumulativeRewardFormula> const& checkTask) {
storm::logic::CumulativeRewardFormula const& rewardPathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeCumulativeRewards(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), checkTask.isRewardModelSet() ? this->getModel().getRewardModel(checkTask.getRewardModel()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeInstantaneousRewards(CheckTask<storm::logic::InstantaneousRewardFormula> const& checkTask) {
storm::logic::InstantaneousRewardFormula const& rewardPathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeInstantaneousRewards(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), checkTask.isRewardModelSet() ? this->getModel().getRewardModel(checkTask.getRewardModel()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeReachabilityRewards(CheckTask<storm::logic::ReachabilityRewardFormula> const& checkTask) {
storm::logic::ReachabilityRewardFormula const& rewardPathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeReachabilityRewards(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), checkTask.isRewardModelSet() ? this->getModel().getRewardModel(checkTask.getRewardModel()) : this->getModel().getRewardModel(""), subResult.getTruthValuesVector(), checkTask.isQualitativeSet(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverageProbabilities(CheckTask<storm::logic::StateFormula> const& checkTask) {
storm::logic::StateFormula const& stateFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeLongRunAverageProbabilities(checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), checkTask.isQualitativeSet(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template class SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>>;
}
}