You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

588 lines
38 KiB

#include "src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h"
#include <vector>
#include <memory>
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/utility/solver.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
template<typename ValueType>
SparseDtmcPrctlModelChecker<ValueType>::SparseDtmcPrctlModelChecker(storm::models::sparse::Dtmc<ValueType> const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : SparsePropositionalModelChecker<ValueType>(model), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) {
// Intentionally left empty.
}
template<typename ValueType>
SparseDtmcPrctlModelChecker<ValueType>::SparseDtmcPrctlModelChecker(storm::models::sparse::Dtmc<ValueType> const& model) : SparsePropositionalModelChecker<ValueType>(model), linearEquationSolverFactory(new storm::utility::solver::LinearEquationSolverFactory<ValueType>()) {
// Intentionally left empty.
}
template<typename ValueType>
bool SparseDtmcPrctlModelChecker<ValueType>::canHandle(storm::logic::Formula const& formula) const {
return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula();
}
template<typename ValueType>
std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound) const {
std::vector<ValueType> result(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
// If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis.
storm::storage::BitVector maybeStates = storm::utility::graph::performProbGreater0(this->getModel().getBackwardTransitions(), phiStates, psiStates, true, stepBound);
maybeStates &= ~psiStates;
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates, true);
// Create the vector of one-step probabilities to go to target states.
std::vector<ValueType> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
// Perform the matrix vector multiplication as often as required by the formula bound.
STORM_LOG_THROW(linearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available.");
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory->create(submatrix);
solver->performMatrixVectorMultiplication(subresult, &b, stepBound);
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(pathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();;
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound())));
return result;
}
template<typename ValueType>
std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeNextProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Create the vector with which to multiply and initialize it correctly.
std::vector<ValueType> result(transitionMatrix.getRowCount());
storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>());
// Perform one single matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result);
return result;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeNextProbabilitiesHelper(this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory)));
}
template<typename ValueType>
std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, phiStates, psiStates);
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
// Perform some logging.
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
STORM_LOG_INFO("Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount());
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5));
} else {
if (!maybeStates.empty()) {
// In this case we have have to compute the probabilities.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 0.5 for each element. This is the initial guess for
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
// probability is strictly larger than 0.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits(), ValueType(0.5));
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, statesWithProbability1);
// Now solve the created system of linear equations.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();;
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();;
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeUntilProbabilitiesHelper(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory)));
}
template<typename ValueType>
std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeCumulativeRewardsHelper(uint_fast64_t stepBound) const {
// Only compute the result if the model has at least one reward model.
STORM_LOG_THROW(this->getModel().hasStateRewards() || this->getModel().hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
std::vector<ValueType> totalRewardVector;
if (this->getModel().hasTransitionRewards()) {
totalRewardVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix());
if (this->getModel().hasStateRewards()) {
storm::utility::vector::addVectors(totalRewardVector, this->getModel().getStateRewardVector(), totalRewardVector);
}
} else {
totalRewardVector = std::vector<ValueType>(this->getModel().getStateRewardVector());
}
// Initialize result to either the state rewards of the model or the null vector.
std::vector<ValueType> result;
if (this->getModel().hasStateRewards()) {
result = std::vector<ValueType>(this->getModel().getStateRewardVector());
} else {
result.resize(this->getModel().getNumberOfStates());
}
// Perform the matrix vector multiplication as often as required by the formula bound.
STORM_LOG_THROW(linearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available.");
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory->create(this->getModel().getTransitionMatrix());
solver->performMatrixVectorMultiplication(result, &totalRewardVector, stepBound);
return result;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(rewardPathFormula.getDiscreteTimeBound())));
}
template<typename ValueType>
std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeInstantaneousRewardsHelper(uint_fast64_t stepCount) const {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(this->getModel().hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the model.
std::vector<ValueType> result(this->getModel().getStateRewardVector());
// Perform the matrix vector multiplication as often as required by the formula bound.
STORM_LOG_THROW(linearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available.");
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory->create(this->getModel().getTransitionMatrix());
solver->performMatrixVectorMultiplication(result, nullptr, stepCount);
return result;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(rewardPathFormula.getDiscreteTimeBound())));
}
template<typename ValueType>
std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeReachabilityRewardsHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, boost::optional<std::vector<ValueType>> const& stateRewardVector, boost::optional<storm::storage::SparseMatrix<ValueType>> const& transitionRewardMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) {
// Only compute the result if the model has at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true);
storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(backwardTransitions, trueStates, targetStates);
infinityStates.complement();
storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates;
STORM_LOG_INFO("Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNumberOfSetBits() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>());
} else {
// In this case we have to compute the reward values for the remaining states.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 1 for each element. This is the initial guess for
// the iterative solvers.
std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>());
// Prepare the right-hand side of the equation system.
std::vector<ValueType> b(submatrix.getRowCount());
if (transitionRewardMatrix) {
// If a transition-based reward model is available, we initialize the right-hand
// side to the vector resulting from summing the rows of the pointwise product
// of the transition probability matrix and the transition reward matrix.
std::vector<ValueType> pointwiseProductRowSumVector = transitionMatrix.getPointwiseProductRowSumVector(transitionRewardMatrix.get());
storm::utility::vector::selectVectorValues(b, maybeStates, pointwiseProductRowSumVector);
if (stateRewardVector) {
// If a state-based reward model is also available, we need to add this vector
// as well. As the state reward vector contains entries not just for the states
// that we still consider (i.e. maybeStates), we need to extract these values
// first.
std::vector<ValueType> subStateRewards(b.size());
storm::utility::vector::selectVectorValues(subStateRewards, maybeStates, stateRewardVector.get());
storm::utility::vector::addVectors(b, subStateRewards, b);
}
} else {
// If only a state-based reward model is available, we take this vector as the
// right-hand side. As the state reward vector contains entries not just for the
// states that we still consider (i.e. maybeStates), we need to extract these values
// first.
storm::utility::vector::selectVectorValues(b, maybeStates, stateRewardVector.get());
}
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>());
return result;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative)));
}
template<typename ValueType>
std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeLongRunAverageHelper(storm::models::sparse::DeterministicModel<ValueType> const& model, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numOfStates = transitionMatrix.getRowCount();
if (psiStates.empty()) {
return std::vector<ValueType>(numOfStates, storm::utility::zero<ValueType>());
}
// Likewise, if all bits are set, we can avoid the computation.
if (psiStates.full()) {
return std::vector<ValueType>(numOfStates, storm::utility::one<ValueType>());
}
// Start by decomposing the DTMC into its BSCCs.
storm::storage::StronglyConnectedComponentDecomposition<double> bsccDecomposition(model, false, true);
// Get some data members for convenience.
ValueType one = storm::utility::one<ValueType>();
ValueType zero = storm::utility::zero<ValueType>();
// First we check which states are in BSCCs. We use this later to speed up reachability analysis
storm::storage::BitVector statesInBsccs(numOfStates);
storm::storage::BitVector statesInBsccsWithoutFirst(numOfStates);
std::vector<uint_fast64_t> stateToBsccIndexMap(transitionMatrix.getColumnCount());
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
// Gather information for later use.
bool first = true;
for (auto const& state : bscc) {
statesInBsccs.set(state);
if (!first) {
statesInBsccsWithoutFirst.set(state);
}
stateToBsccIndexMap[state] = currentBsccIndex;
first = false;
}
}
storm::storage::BitVector statesNotInBsccs = ~statesInBsccs;
std::cout << transitionMatrix << std::endl;
// Calculate steady state distribution for all BSCCs by calculating an eigenvector for the eigenvalue 1 of
// the transposed transition matrix for the BSCCs.
storm::storage::SparseMatrix<ValueType> bsccEquationSystem = transitionMatrix.getSubmatrix(false, statesInBsccs, statesInBsccs, true);
std::cout << bsccEquationSystem << std::endl;
bsccEquationSystem = bsccEquationSystem.transpose(false, true);
std::cout << bsccEquationSystem << std::endl;
// Subtract identity matrix.
for (uint_fast64_t row = 0; row < bsccEquationSystem.getRowCount(); ++row) {
for (auto& entry : bsccEquationSystem.getRow(row)) {
if (entry.getColumn() == row) {
entry.setValue(entry.getValue() - one);
}
}
}
std::cout << bsccEquationSystem << std::endl;
std::cout << statesInBsccsWithoutFirst << " // " << statesInBsccs << std::endl;
bsccEquationSystem = bsccEquationSystem.getSubmatrix(false, statesInBsccsWithoutFirst, statesInBsccs, false);
std::cout << bsccEquationSystem << std::endl;
// For each BSCC, add a row to the matrix that expresses that the sum over all entries in this BSCC needs to be one.
storm::storage::SparseMatrixBuilder<ValueType> builder(std::move(bsccEquationSystem));
typename storm::storage::SparseMatrixBuilder<ValueType>::index_type row = builder.getLastRow() + 1;
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
for (auto const& state : bscc) {
builder.addNextValue(row, state, one);
}
++row;
}
bsccEquationSystem = builder.build();
std::cout << bsccEquationSystem << std::endl;
std::vector<ValueType> bsccEquationSystemRightSide(bsccEquationSystem.getColumnCount(), zero);
bsccEquationSystemRightSide.back() = one;
std::vector<ValueType> bsccEquationSystemSolution(bsccEquationSystem.getColumnCount(), one);
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(bsccEquationSystem);
solver->solveEquationSystem(bsccEquationSystemSolution, bsccEquationSystemRightSide);
}
ValueType sum = zero;
for (auto const& elem : bsccEquationSystemSolution) {
std::cout << "sol " << elem << std::endl;
sum += elem;
}
std::cout << "sum: " << sum << std::endl;
std::cout << "in " << bsccDecomposition.size() << "bsccs" << std::endl;
// Calculate LRA Value for each BSCC from steady state distribution in BSCCs.
// We have to scale the results, as the probabilities for each BSCC have to sum up to one, which they don't
// necessarily do in the solution of the equation system.
std::vector<ValueType> bsccLra(bsccDecomposition.size(), zero);
std::vector<ValueType> bsccTotalValue(bsccDecomposition.size(), zero);
size_t i = 0;
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++i, ++stateIter) {
if (psiStates.get(*stateIter)) {
bsccLra[stateToBsccIndexMap[*stateIter]] += bsccEquationSystemSolution[i];
}
bsccTotalValue[stateToBsccIndexMap[*stateIter]] += bsccEquationSystemSolution[i];
}
for (i = 0; i < bsccLra.size(); ++i) {
bsccLra[i] /= bsccTotalValue[i];
}
std::vector<ValueType> rewardSolution;
if (!statesNotInBsccs.empty()) {
// Calculate LRA for states not in bsccs as expected reachability rewards.
// Target states are states in bsccs, transition reward is the lra of the bscc for each transition into a
// bscc and 0 otherwise. This corresponds to the sum of LRAs in BSCC weighted by the reachability probability
// of the BSCC.
std::vector<ValueType> rewardRightSide;
rewardRightSide.reserve(statesNotInBsccs.getNumberOfSetBits());
for (auto state : statesNotInBsccs) {
ValueType reward = zero;
for (auto entry : transitionMatrix.getRow(state)) {
if (statesInBsccs.get(entry.getColumn())) {
reward += entry.getValue() * bsccLra[stateToBsccIndexMap[entry.getColumn()]];
}
}
rewardRightSide.push_back(reward);
}
storm::storage::SparseMatrix<ValueType> rewardEquationSystemMatrix = transitionMatrix.getSubmatrix(false, statesNotInBsccs, statesNotInBsccs, true);
rewardEquationSystemMatrix.convertToEquationSystem();
rewardSolution = std::vector<ValueType>(rewardEquationSystemMatrix.getColumnCount(), one);
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(rewardEquationSystemMatrix);
solver->solveEquationSystem(rewardSolution, rewardRightSide);
}
}
// Fill the result vector.
std::vector<ValueType> result(numOfStates);
auto rewardSolutionIter = rewardSolution.begin();
for (size_t state = 0; state < numOfStates; ++state) {
if (statesInBsccs.get(state)) {
// Assign the value of the bscc the state is in.
result[state] = bsccLra[stateToBsccIndexMap[state]];
} else {
STORM_LOG_ASSERT(rewardSolutionIter != rewardSolution.end(), "Too few elements in solution.");
// Take the value from the reward computation. Since the n-th state not in any bscc is the n-th
// entry in rewardSolution we can just take the next value from the iterator.
result[state] = *rewardSolutionIter;
++rewardSolutionIter;
}
}
return result;
//old implementeation
//now we calculate the long run average for each BSCC in isolation and compute the weighted contribution of the BSCC to the LRA value of all states
//for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
// storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
// storm::storage::BitVector statesInThisBscc(numOfStates);
// for (auto const& state : bscc) {
// statesInThisBscc.set(state);
// }
// //ValueType lraForThisBscc = this->computeLraForBSCC(transitionMatrix, psiStates, bscc);
// ValueType lraForThisBscc = bsccLra[currentBsccIndex];
// //the LRA value of a BSCC contributes to the LRA value of a state with the probability of reaching that BSCC from that state
// //thus we add Prob(Eventually statesInThisBscc) * lraForThisBscc to the result vector
// //the reachability probabilities will be zero in other BSCCs, thus we can set the left operand of the until formula to statesNotInBsccs as an optimization
// std::vector<ValueType> reachProbThisBscc = this->computeUntilProbabilitiesHelper(statesNotInBsccs, statesInThisBscc, false);
//
// storm::utility::vector::scaleVectorInPlace<ValueType>(reachProbThisBscc, lraForThisBscc);
// storm::utility::vector::addVectorsInPlace<ValueType>(result, reachProbThisBscc);
//}
//return result;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeLongRunAverageHelper(this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory)));
}
template<typename ValueType>
ValueType SparseDtmcPrctlModelChecker<ValueType>::computeLraForBSCC(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, storm::storage::StronglyConnectedComponent const& bscc, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
//if size is one we can immediately derive the result
if (bscc.size() == 1){
if (psiStates.get(*(bscc.begin()))) {
return storm::utility::one<ValueType>();
} else{
return storm::utility::zero<ValueType>();
}
}
storm::storage::BitVector subsystem = storm::storage::BitVector(transitionMatrix.getRowCount());
subsystem.set(bscc.begin(), bscc.end());
//we now have to solve ((P')^t - I) * x = 0, where P' is the submatrix of transitionMatrix,
// ^t means transose, and I is the identity matrix.
storm::storage::SparseMatrix<ValueType> subsystemMatrix = transitionMatrix.getSubmatrix(false, subsystem, subsystem, true);
subsystemMatrix = subsystemMatrix.transpose();
// subtract 1 on the diagonal and at the same time add a row with all ones to enforce that the result of the equation system is unique
storm::storage::SparseMatrixBuilder<ValueType> equationSystemBuilder(subsystemMatrix.getRowCount() + 1, subsystemMatrix.getColumnCount(), subsystemMatrix.getEntryCount() + subsystemMatrix.getColumnCount());
ValueType one = storm::utility::one<ValueType>();
ValueType zero = storm::utility::zero<ValueType>();
bool foundDiagonalElement = false;
for (uint_fast64_t row = 0; row < subsystemMatrix.getRowCount(); ++row) {
for (auto& entry : subsystemMatrix.getRowGroup(row)) {
if (entry.getColumn() == row) {
equationSystemBuilder.addNextValue(row, entry.getColumn(), entry.getValue() - one);
foundDiagonalElement = true;
} else {
equationSystemBuilder.addNextValue(row, entry.getColumn(), entry.getValue());
}
}
// Throw an exception if a row did not have an element on the diagonal.
STORM_LOG_THROW(foundDiagonalElement, storm::exceptions::InvalidOperationException, "Internal Error, no diagonal entry found.");
}
for (uint_fast64_t column = 0; column + 1 < subsystemMatrix.getColumnCount(); ++column) {
equationSystemBuilder.addNextValue(subsystemMatrix.getRowCount(), column, one);
}
equationSystemBuilder.addNextValue(subsystemMatrix.getRowCount(), subsystemMatrix.getColumnCount() - 1, zero);
subsystemMatrix = equationSystemBuilder.build();
// create x and b for the equation system. setting the last entry of b to one enforces the sum over the unique solution vector is one
std::vector<ValueType> steadyStateDist(subsystemMatrix.getRowCount(), zero);
std::vector<ValueType> b(subsystemMatrix.getRowCount(), zero);
b[subsystemMatrix.getRowCount() - 1] = one;
{
auto solver = linearEquationSolverFactory.create(subsystemMatrix);
solver->solveEquationSystem(steadyStateDist, b);
}
//remove the last entry of the vector as it was just there to enforce the unique solution
steadyStateDist.pop_back();
//calculate the fraction we spend in psi states on the long run
std::vector<ValueType> steadyStateForPsiStates(transitionMatrix.getRowCount() - 1, zero);
storm::utility::vector::setVectorValues(steadyStateForPsiStates, psiStates & subsystem, steadyStateDist);
ValueType result = zero;
for (auto value : steadyStateForPsiStates) {
result += value;
}
return result;
}
template<typename ValueType>
storm::models::sparse::Dtmc<ValueType> const& SparseDtmcPrctlModelChecker<ValueType>::getModel() const {
return this->template getModelAs<storm::models::sparse::Dtmc<ValueType>>();
}
template class SparseDtmcPrctlModelChecker<double>;
}
}