You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							102 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							102 lines
						
					
					
						
							4.6 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| using namespace std; | |
| template<typename MatrixType> void diagonalmatrices(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; | |
|   typedef Matrix<Scalar, Rows, 1> VectorType; | |
|   typedef Matrix<Scalar, 1, Cols> RowVectorType; | |
|   typedef Matrix<Scalar, Rows, Rows> SquareMatrixType; | |
|   typedef DiagonalMatrix<Scalar, Rows> LeftDiagonalMatrix; | |
|   typedef DiagonalMatrix<Scalar, Cols> RightDiagonalMatrix; | |
|   typedef Matrix<Scalar, Rows==Dynamic?Dynamic:2*Rows, Cols==Dynamic?Dynamic:2*Cols> BigMatrix; | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols); | |
|   VectorType v1 = VectorType::Random(rows), | |
|              v2 = VectorType::Random(rows); | |
|   RowVectorType rv1 = RowVectorType::Random(cols), | |
|              rv2 = RowVectorType::Random(cols); | |
|   LeftDiagonalMatrix ldm1(v1), ldm2(v2); | |
|   RightDiagonalMatrix rdm1(rv1), rdm2(rv2); | |
|    | |
|   Scalar s1 = internal::random<Scalar>(); | |
| 
 | |
|   SquareMatrixType sq_m1 (v1.asDiagonal()); | |
|   VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); | |
|   sq_m1 = v1.asDiagonal(); | |
|   VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); | |
|   SquareMatrixType sq_m2 = v1.asDiagonal(); | |
|   VERIFY_IS_APPROX(sq_m1, sq_m2); | |
|    | |
|   ldm1 = v1.asDiagonal(); | |
|   LeftDiagonalMatrix ldm3(v1); | |
|   VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal()); | |
|   LeftDiagonalMatrix ldm4 = v1.asDiagonal(); | |
|   VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal()); | |
|    | |
|   sq_m1.block(0,0,rows,rows) = ldm1; | |
|   VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix()); | |
|   sq_m1.transpose() = ldm1; | |
|   VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix()); | |
|    | |
|   Index i = internal::random<Index>(0, rows-1); | |
|   Index j = internal::random<Index>(0, cols-1); | |
|    | |
|   VERIFY_IS_APPROX( ((ldm1 * m1)(i,j))  , ldm1.diagonal()(i) * m1(i,j) ); | |
|   VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j))  , ldm1.diagonal()(i) * (m1+m2)(i,j) ); | |
|   VERIFY_IS_APPROX( ((m1 * rdm1)(i,j))  , rdm1.diagonal()(j) * m1(i,j) ); | |
|   VERIFY_IS_APPROX( ((v1.asDiagonal() * m1)(i,j))  , v1(i) * m1(i,j) ); | |
|   VERIFY_IS_APPROX( ((m1 * rv1.asDiagonal())(i,j))  , rv1(j) * m1(i,j) ); | |
|   VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * m1)(i,j))  , (v1+v2)(i) * m1(i,j) ); | |
|   VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * (m1+m2))(i,j))  , (v1+v2)(i) * (m1+m2)(i,j) ); | |
|   VERIFY_IS_APPROX( ((m1 * (rv1+rv2).asDiagonal())(i,j))  , (rv1+rv2)(j) * m1(i,j) ); | |
|   VERIFY_IS_APPROX( (((m1+m2) * (rv1+rv2).asDiagonal())(i,j))  , (rv1+rv2)(j) * (m1+m2)(i,j) ); | |
| 
 | |
|   BigMatrix big; | |
|   big.setZero(2*rows, 2*cols); | |
|    | |
|   big.block(i,j,rows,cols) = m1; | |
|   big.block(i,j,rows,cols) = v1.asDiagonal() * big.block(i,j,rows,cols); | |
|    | |
|   VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , v1.asDiagonal() * m1 ); | |
|    | |
|   big.block(i,j,rows,cols) = m1; | |
|   big.block(i,j,rows,cols) = big.block(i,j,rows,cols) * rv1.asDiagonal(); | |
|   VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , m1 * rv1.asDiagonal() ); | |
|    | |
|    | |
|   // scalar multiple | |
|   VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1*s1).diagonal(), ldm1.diagonal() * s1); | |
|   VERIFY_IS_APPROX(LeftDiagonalMatrix(s1*ldm1).diagonal(), s1 * ldm1.diagonal()); | |
|    | |
|   VERIFY_IS_APPROX(m1 * (rdm1 * s1), (m1 * rdm1) * s1); | |
|   VERIFY_IS_APPROX(m1 * (s1 * rdm1), (m1 * rdm1) * s1); | |
| } | |
| 
 | |
| void test_diagonalmatrices() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( diagonalmatrices(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( diagonalmatrices(Matrix3f()) ); | |
|     CALL_SUBTEST_3( diagonalmatrices(Matrix<double,3,3,RowMajor>()) ); | |
|     CALL_SUBTEST_4( diagonalmatrices(Matrix4d()) ); | |
|     CALL_SUBTEST_5( diagonalmatrices(Matrix<float,4,4,RowMajor>()) ); | |
|     CALL_SUBTEST_6( diagonalmatrices(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_7( diagonalmatrices(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_8( diagonalmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_9( diagonalmatrices(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|   } | |
| }
 |