You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

147 lines
4.3 KiB

/* glpios08.c (clique cut generator) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2008, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "cfg.h"
#include "env.h"
#include "glpios.h"
void *ios_clq_init(glp_tree *T)
{ /* initialize clique cut generator */
glp_prob *P = T->mip;
CFG *G;
int j, n1, n2;
xprintf("Constructing conflict graph...\n");
G = cfg_build_graph(P);
n1 = n2 = 0;
for (j = 1; j <= P->n; j++)
{ if (G->pos[j])
n1 ++;
if (G->neg[j])
n2++;
}
if (n1 == 0 && n2 == 0)
{ xprintf("No conflicts found\n");
cfg_delete_graph(G);
G = NULL;
}
else
xprintf("Conflict graph has %d + %d = %d vertices\n",
n1, n2, G->nv);
return G;
}
void ios_clq_gen(glp_tree *T, void *G_)
{ /* attempt to generate clique cut */
glp_prob *P = T->mip;
int n = P->n;
CFG *G = G_;
int *pos = G->pos;
int *neg = G->neg;
int nv = G->nv;
int *ref = G->ref;
int j, k, v, len, *ind;
double rhs, sum, *val;
xassert(G->n == n);
/* allocate working arrays */
ind = talloc(1+n, int);
val = talloc(1+n, double);
/* find maximum weight clique in conflict graph */
len = cfg_find_clique(P, G, ind, &sum);
#ifdef GLP_DEBUG
xprintf("len = %d; sum = %g\n", len, sum);
cfg_check_clique(G, len, ind);
#endif
/* check if clique inequality is violated */
if (sum < 1.07)
goto skip;
/* expand clique to maximal one */
len = cfg_expand_clique(G, len, ind);
#ifdef GLP_DEBUG
xprintf("maximal clique size = %d\n", len);
cfg_check_clique(G, len, ind);
#endif
/* construct clique cut (fixed binary variables are removed, so
this cut is only locally valid) */
rhs = 1.0;
for (j = 1; j <= n; j++)
val[j] = 0.0;
for (k = 1; k <= len; k++)
{ /* v is clique vertex */
v = ind[k];
xassert(1 <= v && v <= nv);
/* j is number of corresponding binary variable */
j = ref[v];
xassert(1 <= j && j <= n);
if (pos[j] == v)
{ /* v corresponds to x[j] */
if (P->col[j]->type == GLP_FX)
{ /* x[j] is fixed */
rhs -= P->col[j]->prim;
}
else
{ /* x[j] is not fixed */
val[j] += 1.0;
}
}
else if (neg[j] == v)
{ /* v corresponds to (1 - x[j]) */
if (P->col[j]->type == GLP_FX)
{ /* x[j] is fixed */
rhs -= (1.0 - P->col[j]->prim);
}
else
{ /* x[j] is not fixed */
val[j] -= 1.0;
rhs -= 1.0;
}
}
else
xassert(v != v);
}
/* convert cut inequality to sparse format */
len = 0;
for (j = 1; j <= n; j++)
{ if (val[j] != 0.0)
{ len++;
ind[len] = j;
val[len] = val[j];
}
}
/* add cut inequality to local cut pool */
glp_ios_add_row(T, NULL, GLP_RF_CLQ, 0, len, ind, val, GLP_UP,
rhs);
skip: /* free working arrays */
tfree(ind);
tfree(val);
return;
}
void ios_clq_term(void *G_)
{ /* terminate clique cut generator */
CFG *G = G_;
xassert(G != NULL);
cfg_delete_graph(G);
return;
}
/* eof */