You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

214 lines
10 KiB

#include "GameViHelper.h"
#include "storm/environment/Environment.h"
#include "storm/environment/solver/SolverEnvironment.h"
#include "storm/environment/solver/GameSolverEnvironment.h"
#include "storm/utility/SignalHandler.h"
#include "storm/utility/vector.h"
// TODO this will undergo major refactoring as soon as we implement model checking of further properties
namespace storm {
namespace modelchecker {
namespace helper {
namespace internal {
template <typename ValueType>
GameViHelper<ValueType>::GameViHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector statesOfCoalition) : _transitionMatrix(transitionMatrix), _statesOfCoalition(statesOfCoalition) {
}
template <typename ValueType>
void GameViHelper<ValueType>::prepareSolversAndMultipliersReachability(const Environment& env) {
// TODO we get whole transitionmatrix and psistates DONE IN smgrpatlhelper
// -> clip statesofcoalition
// -> compute b vector from psiStates
// -> clip transitionmatrix and create multiplier
_multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, _transitionMatrix);
_x1IsCurrent = false;
}
template <typename ValueType>
void GameViHelper<ValueType>::performValueIteration(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> b, storm::solver::OptimizationDirection const dir) {
prepareSolversAndMultipliersReachability(env);
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().game().getPrecision());
uint64_t maxIter = env.solver().game().getMaximalNumberOfIterations();
_b = b;
_x1.assign(_transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
_x2 = _x1;
if (this->isProduceSchedulerSet()) {
if (!this->_producedOptimalChoices.is_initialized()) {
this->_producedOptimalChoices.emplace();
}
this->_producedOptimalChoices->resize(this->_transitionMatrix.getRowGroupCount());
}
uint64_t iter = 0;
std::vector<ValueType> result = x;
while (iter < maxIter) {
++iter;
performIterationStep(env, dir);
if (checkConvergence(precision)) {
break;
}
if (storm::utility::resources::isTerminate()) {
break;
}
}
x = xNew();
if (isProduceSchedulerSet()) {
// We will be doing one more iteration step and track scheduler choices this time.
performIterationStep(env, dir, &_producedOptimalChoices.get());
}
}
template <typename ValueType>
void GameViHelper<ValueType>::performIterationStep(Environment const& env, storm::solver::OptimizationDirection const dir, std::vector<uint64_t>* choices) {
if (!_multiplier) {
prepareSolversAndMultipliersReachability(env);
}
_x1IsCurrent = !_x1IsCurrent;
// multiplyandreducegaussseidel
// Ax + b
if (choices == nullptr) {
//STORM_LOG_DEBUG("\n" << _transitionMatrix);
//STORM_LOG_DEBUG("xOld = " << storm::utility::vector::toString(xOld()));
//STORM_LOG_DEBUG("b = " << storm::utility::vector::toString(_b));
//STORM_LOG_DEBUG("xNew = " << storm::utility::vector::toString(xNew()));
_multiplier->multiplyAndReduce(env, dir, xOld(), &_b, xNew(), nullptr, &_statesOfCoalition);
//std::cin.get();
} else {
// Also keep track of the choices made.
_multiplier->multiplyAndReduce(env, dir, xOld(), &_b, xNew(), choices, &_statesOfCoalition);
}
// compare applyPointwise
storm::utility::vector::applyPointwise<ValueType, ValueType, ValueType>(xOld(), xNew(), xNew(), [&dir] (ValueType const& a, ValueType const& b) -> ValueType {
if(storm::solver::maximize(dir)) {
if(a > b) return a;
else return b;
} else {
if(a > b) return a;
else return b;
}
});
}
template <typename ValueType>
bool GameViHelper<ValueType>::checkConvergence(ValueType threshold) const {
STORM_LOG_ASSERT(_multiplier, "tried to check for convergence without doing an iteration first.");
// Now check whether the currently produced results are precise enough
STORM_LOG_ASSERT(threshold > storm::utility::zero<ValueType>(), "Did not expect a non-positive threshold.");
auto x1It = xOld().begin();
auto x1Ite = xOld().end();
auto x2It = xNew().begin();
ValueType maxDiff = (*x2It - *x1It);
ValueType minDiff = maxDiff;
// The difference between maxDiff and minDiff is zero at this point. Thus, it doesn't make sense to check the threshold now.
for (++x1It, ++x2It; x1It != x1Ite; ++x1It, ++x2It) {
ValueType diff = (*x2It - *x1It);
// Potentially update maxDiff or minDiff
bool skipCheck = false;
if (maxDiff < diff) {
maxDiff = diff;
} else if (minDiff > diff) {
minDiff = diff;
} else {
skipCheck = true;
}
// Check convergence
if (!skipCheck && (maxDiff - minDiff) > threshold) {
return false;
}
}
// TODO needs checking
return true;
}
template <typename ValueType>
void GameViHelper<ValueType>::fillResultVector(std::vector<ValueType>& result, storm::storage::BitVector relevantStates, storm::storage::BitVector psiStates)
{
std::vector<ValueType> filledVector = std::vector<ValueType>(relevantStates.size(), storm::utility::zero<ValueType>());
uint bitIndex = 0;
for(uint i = 0; i < filledVector.size(); i++) {
if (relevantStates.get(i)) {
filledVector.at(i) = result.at(bitIndex);
bitIndex++;
}
else if (psiStates.get(i)) {
filledVector.at(i) = 1;
}
}
result = filledVector;
}
template <typename ValueType>
void GameViHelper<ValueType>::setProduceScheduler(bool value) {
_produceScheduler = value;
}
template <typename ValueType>
bool GameViHelper<ValueType>::isProduceSchedulerSet() const {
return _produceScheduler;
}
template <typename ValueType>
std::vector<uint64_t> const& GameViHelper<ValueType>::getProducedOptimalChoices() const {
STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested.");
STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?");
return this->_producedOptimalChoices.get();
}
template <typename ValueType>
std::vector<uint64_t>& GameViHelper<ValueType>::getProducedOptimalChoices() {
STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested.");
STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?");
return this->_producedOptimalChoices.get();
}
template <typename ValueType>
storm::storage::Scheduler<ValueType> GameViHelper<ValueType>::extractScheduler() const{
auto const& optimalChoices = getProducedOptimalChoices();
storm::storage::Scheduler<ValueType> scheduler(optimalChoices.size());
for (uint64_t state = 0; state < optimalChoices.size(); ++state) {
scheduler.setChoice(optimalChoices[state], state);
}
return scheduler;
}
template <typename ValueType>
std::vector<ValueType>& GameViHelper<ValueType>::xNew() {
return _x1IsCurrent ? _x1 : _x2;
}
template <typename ValueType>
std::vector<ValueType> const& GameViHelper<ValueType>::xNew() const {
return _x1IsCurrent ? _x1 : _x2;
}
template <typename ValueType>
std::vector<ValueType>& GameViHelper<ValueType>::xOld() {
return _x1IsCurrent ? _x2 : _x1;
}
template <typename ValueType>
std::vector<ValueType> const& GameViHelper<ValueType>::xOld() const {
return _x1IsCurrent ? _x2 : _x1;
}
template class GameViHelper<double>;
#ifdef STORM_HAVE_CARL
template class GameViHelper<storm::RationalNumber>;
#endif
}
}
}
}