You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							67 lines
						
					
					
						
							2.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							67 lines
						
					
					
						
							2.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/LU> | |
|  | |
| template<typename MatrixType> void determinant(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      Determinant.h | |
|   */ | |
|   typedef typename MatrixType::Index Index; | |
|   Index size = m.rows(); | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size); | |
|   m1.setRandom(); | |
|   m2.setRandom(); | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   Scalar x = internal::random<Scalar>(); | |
|   VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); | |
|   VERIFY_IS_APPROX((m1*m2).eval().determinant(), m1.determinant() * m2.determinant()); | |
|   if(size==1) return; | |
|   Index i = internal::random<Index>(0, size-1); | |
|   Index j; | |
|   do { | |
|     j = internal::random<Index>(0, size-1); | |
|   } while(j==i); | |
|   m2 = m1; | |
|   m2.row(i).swap(m2.row(j)); | |
|   VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); | |
|   m2 = m1; | |
|   m2.col(i).swap(m2.col(j)); | |
|   VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); | |
|   VERIFY_IS_APPROX(m2.determinant(), m2.transpose().determinant()); | |
|   VERIFY_IS_APPROX(numext::conj(m2.determinant()), m2.adjoint().determinant()); | |
|   m2 = m1; | |
|   m2.row(i) += x*m2.row(j); | |
|   VERIFY_IS_APPROX(m2.determinant(), m1.determinant()); | |
|   m2 = m1; | |
|   m2.row(i) *= x; | |
|   VERIFY_IS_APPROX(m2.determinant(), m1.determinant() * x); | |
|    | |
|   // check empty matrix | |
|   VERIFY_IS_APPROX(m2.block(0,0,0,0).determinant(), Scalar(1)); | |
| } | |
| 
 | |
| void test_determinant() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     int s = 0; | |
|     CALL_SUBTEST_1( determinant(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( determinant(Matrix<double, 2, 2>()) ); | |
|     CALL_SUBTEST_3( determinant(Matrix<double, 3, 3>()) ); | |
|     CALL_SUBTEST_4( determinant(Matrix<double, 4, 4>()) ); | |
|     CALL_SUBTEST_5( determinant(Matrix<std::complex<double>, 10, 10>()) ); | |
|     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | |
|     CALL_SUBTEST_6( determinant(MatrixXd(s, s)) ); | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s) | |
|   } | |
| }
 |