You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

208 lines
15 KiB

#include "storm/modelchecker/multiobjective/pcaa/SparsePcaaQuantitativeQuery.h"
#include "storm/adapters/CarlAdapter.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/MarkovAutomaton.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "storm/utility/constants.h"
#include "storm/utility/vector.h"
#include "storm/settings//SettingsManager.h"
#include "storm/settings/modules/MultiObjectiveSettings.h"
#include "storm/settings/modules/GeneralSettings.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <class SparseModelType, typename GeometryValueType>
SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::SparsePcaaQuantitativeQuery(SparsePcaaPreprocessorReturnType<SparseModelType>& preprocessorResult) : SparsePcaaQuery<SparseModelType, GeometryValueType>(preprocessorResult) {
STORM_LOG_ASSERT(preprocessorResult.queryType==SparsePcaaPreprocessorReturnType<SparseModelType>::QueryType::Quantitative, "Invalid query Type");
STORM_LOG_ASSERT(preprocessorResult.indexOfOptimizingObjective, "Detected quantitative query but index of optimizing objective is not set.");
indexOfOptimizingObjective = *preprocessorResult.indexOfOptimizingObjective;
initializeThresholdData();
// Set the maximum distance between lower and upper bound of the weightVectorChecker result.
this->weightVectorChecker->setWeightedPrecision(storm::utility::convertNumber<typename SparseModelType::ValueType>(0.1));
}
template <class SparseModelType, typename GeometryValueType>
void SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::initializeThresholdData() {
thresholds.reserve(this->objectives.size());
strictThresholds = storm::storage::BitVector(this->objectives.size(), false);
std::vector<storm::storage::geometry::Halfspace<GeometryValueType>> thresholdConstraints;
thresholdConstraints.reserve(this->objectives.size()-1);
for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
if(this->objectives[objIndex].threshold) {
thresholds.push_back(storm::utility::convertNumber<GeometryValueType>(*this->objectives[objIndex].threshold));
WeightVector normalVector(this->objectives.size(), storm::utility::zero<GeometryValueType>());
normalVector[objIndex] = -storm::utility::one<GeometryValueType>();
thresholdConstraints.emplace_back(std::move(normalVector), -thresholds.back());
strictThresholds.set(objIndex, this->objectives[objIndex].thresholdIsStrict);
} else {
thresholds.push_back(storm::utility::zero<GeometryValueType>());
}
}
// Note: If we have a single objective (i.e., no objectives with thresholds), thresholdsAsPolytope gets no constraints
thresholdsAsPolytope = storm::storage::geometry::Polytope<GeometryValueType>::create(thresholdConstraints);
}
template <class SparseModelType, typename GeometryValueType>
std::unique_ptr<CheckResult> SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::check() {
// First find one solution that achieves the given thresholds ...
if(this->checkAchievability()) {
// ... then improve it
GeometryValueType result = this->improveSolution();
// transform the obtained result for the preprocessed model to a result w.r.t. the original model and return the checkresult
typename SparseModelType::ValueType resultForOriginalModel =
storm::utility::convertNumber<typename SparseModelType::ValueType>(result) *
this->objectives[indexOfOptimizingObjective].toOriginalValueTransformationFactor +
this->objectives[indexOfOptimizingObjective].toOriginalValueTransformationOffset;
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<typename SparseModelType::ValueType>(this->originalModel.getInitialStates().getNextSetIndex(0), resultForOriginalModel));
} else {
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(this->originalModel.getInitialStates().getNextSetIndex(0), false));
}
}
template <class SparseModelType, typename GeometryValueType>
bool SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::checkAchievability() {
if(this->objectives.size()>1) {
// We don't care for the optimizing objective at this point
this->diracWeightVectorsToBeChecked.set(indexOfOptimizingObjective, false);
while(!this->maxStepsPerformed()){
WeightVector separatingVector = this->findSeparatingVector(thresholds);
this->updateWeightedPrecisionInAchievabilityPhase(separatingVector);
this->performRefinementStep(std::move(separatingVector));
//Pick the threshold for the optimizing objective low enough so valid solutions are not excluded
thresholds[indexOfOptimizingObjective] = std::min(thresholds[indexOfOptimizingObjective], this->refinementSteps.back().lowerBoundPoint[indexOfOptimizingObjective]);
if(!checkIfThresholdsAreSatisfied(this->overApproximation)){
return false;
}
if(checkIfThresholdsAreSatisfied(this->underApproximation)){
return true;
}
}
} else {
// If there is only one objective than its the optimizing one. Thus the query has to be achievable.
return true;
}
STORM_LOG_ERROR("Could not check whether thresholds are achievable: Exceeded maximum number of refinement steps");
return false;
}
template <class SparseModelType, typename GeometryValueType>
void SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::updateWeightedPrecisionInAchievabilityPhase(WeightVector const& weights) {
// Our heuristic considers the distance between the under- and the over approximation w.r.t. the given direction
std::pair<Point, bool> optimizationResOverApprox = this->overApproximation->optimize(weights);
if(optimizationResOverApprox.second) {
std::pair<Point, bool> optimizationResUnderApprox = this->underApproximation->optimize(weights);
if(optimizationResUnderApprox.second) {
GeometryValueType distance = storm::utility::vector::dotProduct(optimizationResOverApprox.first, weights) - storm::utility::vector::dotProduct(optimizationResUnderApprox.first, weights);
STORM_LOG_ASSERT(distance >= storm::utility::zero<GeometryValueType>(), "Negative distance between under- and over approximation was not expected");
// Normalize the distance by dividing it with the Euclidean Norm of the weight-vector
distance /= storm::utility::sqrt(storm::utility::vector::dotProduct(weights, weights));
distance /= GeometryValueType(2);
this->weightVectorChecker->setWeightedPrecision(storm::utility::convertNumber<typename SparseModelType::ValueType>(distance));
}
}
// do not update the precision if one of the approximations is unbounded in the provided direction
}
template <class SparseModelType, typename GeometryValueType>
GeometryValueType SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::improveSolution() {
this->diracWeightVectorsToBeChecked.clear(); // Only check weight vectors that can actually improve the solution
WeightVector directionOfOptimizingObjective(this->objectives.size(), storm::utility::zero<GeometryValueType>());
directionOfOptimizingObjective[indexOfOptimizingObjective] = storm::utility::one<GeometryValueType>();
// Improve the found solution.
// Note that we do not care whether a threshold is strict anymore, because the resulting optimum should be
// the supremum over all strategies. Hence, one could combine a scheduler inducing the optimum value (but possibly violating strict
// thresholds) and (with very low probability) a scheduler that satisfies all (possibly strict) thresholds.
GeometryValueType result = storm::utility::zero<GeometryValueType>();
while(!this->maxStepsPerformed()) {
if(this->refinementSteps.empty()) {
// We did not make any refinement steps during the checkAchievability phase (e.g., because there is only one objective).
this->weightVectorChecker->setWeightedPrecision(storm::utility::convertNumber<typename SparseModelType::ValueType>(storm::settings::getModule<storm::settings::modules::MultiObjectiveSettings>().getPrecision()));
WeightVector separatingVector = directionOfOptimizingObjective;
this->performRefinementStep(std::move(separatingVector));
}
std::pair<Point, bool> optimizationRes = this->underApproximation->intersection(thresholdsAsPolytope)->optimize(directionOfOptimizingObjective);
STORM_LOG_THROW(optimizationRes.second, storm::exceptions::UnexpectedException, "The underapproximation is either unbounded or empty.");
result = optimizationRes.first[indexOfOptimizingObjective];
STORM_LOG_DEBUG("Best solution found so far is ~" << storm::utility::convertNumber<double>(result) << ".");
//Compute an upper bound for the optimum and check for convergence
optimizationRes = this->overApproximation->intersection(thresholdsAsPolytope)->optimize(directionOfOptimizingObjective);
if(optimizationRes.second) {
GeometryValueType precisionOfResult = optimizationRes.first[indexOfOptimizingObjective] - result;
if(precisionOfResult < storm::utility::convertNumber<GeometryValueType>(storm::settings::getModule<storm::settings::modules::MultiObjectiveSettings>().getPrecision())) {
// Goal precision reached!
return result;
} else {
STORM_LOG_DEBUG("Solution can be improved by at most " << storm::utility::convertNumber<double>(precisionOfResult));
thresholds[indexOfOptimizingObjective] = optimizationRes.first[indexOfOptimizingObjective];
}
} else {
thresholds[indexOfOptimizingObjective] = result + storm::utility::one<GeometryValueType>();
}
WeightVector separatingVector = this->findSeparatingVector(thresholds);
this->updateWeightedPrecisionInImprovingPhase(separatingVector);
this->performRefinementStep(std::move(separatingVector));
}
STORM_LOG_ERROR("Could not reach the desired precision: Exceeded maximum number of refinement steps");
return result;
}
template <class SparseModelType, typename GeometryValueType>
void SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::updateWeightedPrecisionInImprovingPhase(WeightVector const& weights) {
STORM_LOG_THROW(!storm::utility::isZero(weights[this->indexOfOptimizingObjective]), exceptions::UnexpectedException, "The chosen weight-vector gives zero weight for the objective that is to be optimized.");
// If weighs[indexOfOptimizingObjective] is low, the computation of the weightVectorChecker needs to be more precise.
// Our heuristic ensures that if p is the new vertex of the under-approximation, then max{ eps | p' = p + (0..0 eps 0..0) is in the over-approximation } <= multiobjective_precision/0.9
GeometryValueType weightedPrecision = weights[this->indexOfOptimizingObjective] * storm::utility::convertNumber<GeometryValueType>(storm::settings::getModule<storm::settings::modules::MultiObjectiveSettings>().getPrecision());
// Normalize by division with the Euclidean Norm of the weight-vector
weightedPrecision /= storm::utility::sqrt(storm::utility::vector::dotProduct(weights, weights));
weightedPrecision *= storm::utility::convertNumber<GeometryValueType>(0.9);
this->weightVectorChecker->setWeightedPrecision(storm::utility::convertNumber<typename SparseModelType::ValueType>(weightedPrecision));
}
template <class SparseModelType, typename GeometryValueType>
bool SparsePcaaQuantitativeQuery<SparseModelType, GeometryValueType>::checkIfThresholdsAreSatisfied(std::shared_ptr<storm::storage::geometry::Polytope<GeometryValueType>> const& polytope) {
std::vector<storm::storage::geometry::Halfspace<GeometryValueType>> halfspaces = polytope->getHalfspaces();
for(auto const& h : halfspaces) {
if(storm::utility::isZero(h.distance(thresholds))) {
// Check if the threshold point is on the boundary of the halfspace and whether this is violates strict thresholds
if(h.isPointOnBoundary(thresholds)) {
for(auto strictThreshold : strictThresholds) {
if(h.normalVector()[strictThreshold] > storm::utility::zero<GeometryValueType>()) {
return false;
}
}
}
} else {
return false;
}
}
return true;
}
#ifdef STORM_HAVE_CARL
template class SparsePcaaQuantitativeQuery<storm::models::sparse::Mdp<double>, storm::RationalNumber>;
template class SparsePcaaQuantitativeQuery<storm::models::sparse::MarkovAutomaton<double>, storm::RationalNumber>;
template class SparsePcaaQuantitativeQuery<storm::models::sparse::Mdp<storm::RationalNumber>, storm::RationalNumber>;
template class SparsePcaaQuantitativeQuery<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>, storm::RationalNumber>;
#endif
}
}
}