You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

306 lines
19 KiB

#pragma once
#include <vector>
#include <boost/optional.hpp>
#include "storm/solver/OptimizationDirection.h"
#include "storm/solver/SolverStatus.h"
#include "storm/utility/vector.h"
#include "storm/utility/ProgressMeasurement.h"
#include "storm/utility/SignalHandler.h"
#include "storm/storage/BitVector.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/environment/solver/OviSolverEnvironment.h"
#include "storm/utility/macros.h"
namespace storm {
namespace solver {
namespace helper {
namespace oviinternal {
template<typename ValueType>
ValueType computeMaxAbsDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues, storm::storage::BitVector const& relevantValues) {
ValueType result = storm::utility::zero<ValueType>();
for (auto value : relevantValues) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[value] - allOldValues[value]));
}
return result;
}
template<typename ValueType>
ValueType computeMaxAbsDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues) {
ValueType result = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < allOldValues.size(); ++i) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]));
}
return result;
}
template<typename ValueType>
ValueType computeMaxRelDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues, storm::storage::BitVector const& relevantValues) {
ValueType result = storm::utility::zero<ValueType>();
for (auto const& i : relevantValues) {
STORM_LOG_ASSERT(!storm::utility::isZero(allNewValues[i]) || storm::utility::isZero(allOldValues[i]), "Unexpected entry in iteration vector.");
if (!storm::utility::isZero(allNewValues[i])) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]) / allNewValues[i]);
}
}
return result;
}
template<typename ValueType>
ValueType computeMaxRelDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues) {
ValueType result = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < allOldValues.size(); ++i) {
STORM_LOG_ASSERT(!storm::utility::isZero(allNewValues[i]) || storm::utility::isZero(allOldValues[i]), "Unexpected entry in iteration vector.");
if (!storm::utility::isZero(allNewValues[i])) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]) / allNewValues[i]);
}
}
return result;
}
template<typename ValueType>
ValueType updateIterationPrecision(storm::Environment const& env, std::vector<ValueType> const& currentX, std::vector<ValueType> const& newX, bool const& relative, boost::optional<storm::storage::BitVector> const& relevantValues) {
auto factor = storm::utility::convertNumber<ValueType>(env.solver().ovi().getPrecisionUpdateFactor());
bool useRelevant = relevantValues.is_initialized() && env.solver().ovi().useRelevantValuesForPrecisionUpdate();
if (relative) {
return (useRelevant ? computeMaxRelDiff(newX, currentX, relevantValues.get()) : computeMaxRelDiff(newX, currentX)) * factor;
} else {
return (useRelevant ? computeMaxAbsDiff(newX, currentX, relevantValues.get()) : computeMaxAbsDiff(newX, currentX)) * factor;
}
}
template<typename ValueType>
void guessUpperBoundRelative(std::vector<ValueType> const& x, std::vector<ValueType> &target, ValueType const& relativeBoundGuessingScaler) {
storm::utility::vector::applyPointwise<ValueType, ValueType>(x, target, [&relativeBoundGuessingScaler] (ValueType const& argument) -> ValueType { return argument * relativeBoundGuessingScaler; });
}
template<typename ValueType>
void guessUpperBoundAbsolute(std::vector<ValueType> const& x, std::vector<ValueType> &target, ValueType const& precision) {
storm::utility::vector::applyPointwise<ValueType, ValueType>(x, target, [&precision] (ValueType const& argument) -> ValueType { return argument + precision; });
}
}
/*!
* Performs Optimistic value iteration.
* See https://arxiv.org/abs/1910.01100 for more information on this algorithm
*
* @tparam ValueType
* @tparam ValueType
* @param env
* @param lowerX Needs to be some arbitrary lower bound on the actual values initially
* @param upperX Does not need to be an upper bound initially
* @param auxVector auxiliary storage
* @param valueIterationCallback Function that should perform standard value iteration on the input vector
* @param singleIterationCallback Function that should perform a single value iteration step on the input vector e.g. ( x' = min/max(A*x + b))
* @param relevantValues If given, we only check the precision at the states with the given indices.
* @return The status upon termination as well as the number of iterations Also, the maximum (relative/absolute) difference between lowerX and upperX will be 2*epsilon
* with precision parameters as given by the environment env.
*/
template<typename ValueType, typename ValueIterationCallback, typename SingleIterationCallback>
std::pair<SolverStatus, uint64_t> solveEquationsOptimisticValueIteration(Environment const& env, std::vector<ValueType>* lowerX, std::vector<ValueType>* upperX, std::vector<ValueType>* auxVector, ValueIterationCallback const& valueIterationCallback, SingleIterationCallback const& singleIterationCallback, bool relative, ValueType precision, uint64_t maxOverallIterations, boost::optional<storm::storage::BitVector> relevantValues = boost::none) {
STORM_LOG_ASSERT(lowerX->size() == upperX->size(), "Dimension missmatch.");
STORM_LOG_ASSERT(lowerX->size() == auxVector->size(), "Dimension missmatch.");
// As we will shuffle pointers around, let's store the original positions here.
std::vector<ValueType>* initLowerX = lowerX;
std::vector<ValueType>* initUpperX = upperX;
std::vector<ValueType>* initAux = auxVector;
uint64_t overallIterations = 0;
uint64_t lastValueIterationIterations = 0;
uint64_t currentVerificationIterations = 0;
uint64_t valueIterationInvocations = 0;
// Get some parameters for the algorithm
// 2
ValueType two = storm::utility::convertNumber<ValueType>(2.0);
// Use no termination guaranteed upper bound iteration method
bool noTerminationGuarantee = env.solver().ovi().useNoTerminationGuaranteeMinimumMethod();
// Desired max difference between upperX and lowerX
ValueType doublePrecision = precision * two;
// Upper bound only iterations
uint64_t upperBoundOnlyIterations = env.solver().ovi().getUpperBoundOnlyIterations();
ValueType relativeBoundGuessingScaler = (storm::utility::one<ValueType>() + storm::utility::convertNumber<ValueType>(env.solver().ovi().getUpperBoundGuessingFactor()) * precision);
// Initial precision for the value iteration calls
ValueType iterationPrecision = precision;
SolverStatus status = SolverStatus::InProgress;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
// Perform value iteration until convergence
++valueIterationInvocations;
auto result = valueIterationCallback(lowerX, auxVector, iterationPrecision, relative, overallIterations, maxOverallIterations);
lastValueIterationIterations = result.iterations;
overallIterations += result.iterations;
if (result.status != SolverStatus::Converged) {
status = result.status;
} else {
bool intervalIterationNeeded = false;
currentVerificationIterations = 0;
if (relative) {
oviinternal::guessUpperBoundRelative(*lowerX, *upperX, relativeBoundGuessingScaler);
} else {
oviinternal::guessUpperBoundAbsolute(*lowerX, *upperX, precision);
}
bool cancelGuess = false;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
++overallIterations;
++currentVerificationIterations;
// Perform value iteration stepwise for lower bound and guessed upper bound
// Upper bound iteration
singleIterationCallback(upperX, auxVector, overallIterations);
// At this point, auxVector contains the old values for the upper bound whereas upperX contains the new ones.
// Compare the new upper bound candidate with the old one
bool newUpperBoundAlwaysHigherEqual = true;
bool newUpperBoundAlwaysLowerEqual = true;
if (noTerminationGuarantee) {
bool cancelOuterScan = false;
for (uint64_t i = 0; i < upperX->size() & !cancelOuterScan; ++i) {
if ((*upperX)[i] < (*auxVector)[i]) {
newUpperBoundAlwaysHigherEqual = false;
for (++i; i < upperX->size(); ++i) {
if ((*upperX)[i] > (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
cancelOuterScan = true;
break;
}
}
} else if ((*upperX)[i] != (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
for (++i; i < upperX->size(); ++i) {
if ((*upperX)[i] < (*auxVector)[i]) {
newUpperBoundAlwaysHigherEqual = false;
cancelOuterScan = true;
break;
}
}
}
}
} else {
for (uint64_t i = 0; i < upperX->size(); ++i) {
if ((*upperX)[i] < (*auxVector)[i]) {
newUpperBoundAlwaysHigherEqual = false;
} else if ((*upperX)[i] != (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
std::swap((*upperX)[i], (*auxVector)[i]);
}
}
}
if (newUpperBoundAlwaysHigherEqual & !newUpperBoundAlwaysLowerEqual) {
// All values moved up or stayed the same
// That means the guess for an upper bound is actually a lower bound
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *upperX, relative, relevantValues);
// We assume to have a single fixed point. We can thus safely set the new lower bound, to the wrongly guessed upper bound
// Set lowerX to the upper bound candidate
std::swap(lowerX, upperX);
break;
} else if (newUpperBoundAlwaysLowerEqual & !newUpperBoundAlwaysHigherEqual) {
// All values moved down or stayed the same and we have a maximum difference of twice the requested precision
// We can safely use twice the requested precision, as we calculate the center of both vectors
bool reachedPrecision;
if (relevantValues) {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, relevantValues.get(), doublePrecision, relative);
} else {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, doublePrecision, relative);
}
if (reachedPrecision) {
status = SolverStatus::Converged;
break;
} else {
// From now on, we keep updating both bounds
intervalIterationNeeded = true;
}
}
// At this point, the old upper bounds (auxVector) are not needed anymore.
// Check whether we tried this guess for too long
ValueType scaledIterationCount = storm::utility::convertNumber<ValueType>(currentVerificationIterations) * storm::utility::convertNumber<ValueType>(env.solver().ovi().getMaxVerificationIterationFactor());
if (!intervalIterationNeeded && scaledIterationCount >= storm::utility::convertNumber<ValueType>(lastValueIterationIterations)) {
cancelGuess = true;
// In this case we will make one more iteration on the lower bound (mainly to obtain a new iterationPrecision)
}
// Lower bound iteration (only if needed)
if (cancelGuess || intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
singleIterationCallback(lowerX, auxVector, overallIterations);
// At this point, auxVector contains the old values for the lower bound whereas lowerX contains the new ones.
// Check whether the upper and lower bounds have crossed, i.e., the upper bound is smaller than the lower bound.
bool valuesCrossed = false;
for (uint64_t i = 0; i < lowerX->size(); ++i) {
if ((*upperX)[i] < (*lowerX)[i]) {
valuesCrossed = true;
break;
}
}
if (cancelGuess || valuesCrossed) {
// A new guess is needed.
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *lowerX, relative, relevantValues);
break;
}
}
}
if (storm::utility::resources::isTerminate()) {
status = SolverStatus::Aborted;
}
}
} // end while
// Swap the results into the output vectors.
if (initLowerX == lowerX) {
// lowerX is already at the correct position. We still have to care for upperX
if (initUpperX != upperX) {
// UpperX is not at the correct position. It has to be at the auxVector
assert(initAux == upperX);
std::swap(*initUpperX, *initAux);
}
} else if (initUpperX == upperX) {
// UpperX is already at the correct position.
// We already know that lowerX is at the wrong position. It has to be at the auxVector
assert(initAux == lowerX);
std::swap(*initLowerX, *initAux);
} else if (initAux == auxVector) {
// We know that upperX and lowerX are swapped.
assert(initLowerX == upperX);
assert(initUpperX == lowerX);
std::swap(*initUpperX, *initLowerX);
} else {
// Now we know that all vectors are at the wrong position. There are only two possibilities left
if (initLowerX == upperX) {
assert(initUpperX == auxVector);
assert(initAux == lowerX);
std::swap(*initLowerX, *initAux);
std::swap(*initUpperX, *initAux);
} else {
assert(initLowerX == auxVector);
assert(initUpperX == lowerX);
assert (initAux == upperX);
std::swap(*initUpperX, *initAux);
std::swap(*initLowerX, *initAux);
}
}
if (overallIterations > maxOverallIterations) {
status = SolverStatus::MaximalIterationsExceeded;
}
return {status, overallIterations};
}
}
}
}