You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							81 lines
						
					
					
						
							3.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							81 lines
						
					
					
						
							3.4 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								  typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType;
							 | 
						|
								
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3;
							 | 
						|
								  VectorType v1 = VectorType::Random(rows),
							 | 
						|
								             v2 = VectorType::Random(rows),
							 | 
						|
								             v3(rows);
							 | 
						|
								  RowVectorType r1 = RowVectorType::Random(rows),
							 | 
						|
								                r2 = RowVectorType::Random(rows);
							 | 
						|
								  RhsMatrixType m4 = RhsMatrixType::Random(rows,10);
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>(),
							 | 
						|
								         s2 = internal::random<Scalar>(),
							 | 
						|
								         s3 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  m1 = (m1.adjoint() + m1).eval();
							 | 
						|
								
							 | 
						|
								  // rank2 update
							 | 
						|
								  m2 = m1.template triangularView<Lower>();
							 | 
						|
								  m2.template selfadjointView<Lower>().rankUpdate(v1,v2);
							 | 
						|
								  VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix());
							 | 
						|
								
							 | 
						|
								  m2 = m1.template triangularView<Upper>();
							 | 
						|
								  m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3);
							 | 
						|
								  VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+internal::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix());
							 | 
						|
								
							 | 
						|
								  m2 = m1.template triangularView<Upper>();
							 | 
						|
								  m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1);
							 | 
						|
								  VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() + internal::conj(s1)*(r2.adjoint()*s3) * (-s2*r1.adjoint()).adjoint()).template triangularView<Upper>().toDenseMatrix());
							 | 
						|
								
							 | 
						|
								  if (rows>1)
							 | 
						|
								  {
							 | 
						|
								    m2 = m1.template triangularView<Lower>();
							 | 
						|
								    m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1));
							 | 
						|
								    m3 = m1;
							 | 
						|
								    m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint();
							 | 
						|
								    VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix());
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_product_selfadjoint()
							 | 
						|
								{
							 | 
						|
								  int s;
							 | 
						|
								  for(int i = 0; i < g_repeat ; i++) {
							 | 
						|
								    CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) );
							 | 
						|
								    CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
							 | 
						|
								    CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(s, s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
							 | 
						|
								    CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(s,s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								    CALL_SUBTEST_6( product_selfadjoint(MatrixXd(s,s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								    CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s,s)) );
							 | 
						|
								  }
							 | 
						|
								  EIGEN_UNUSED_VARIABLE(s)
							 | 
						|
								}
							 |