You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							64 lines
						
					
					
						
							2.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							64 lines
						
					
					
						
							2.6 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "product.h"
							 | 
						|
								
							 | 
						|
								void test_product_large()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( product(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_2( product(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_3( product(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_4( product(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
							 | 
						|
								    CALL_SUBTEST_5( product(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								#if defined EIGEN_TEST_PART_6
							 | 
						|
								  {
							 | 
						|
								    // test a specific issue in DiagonalProduct
							 | 
						|
								    int N = 1000000;
							 | 
						|
								    VectorXf v = VectorXf::Ones(N);
							 | 
						|
								    MatrixXf m = MatrixXf::Ones(N,3);
							 | 
						|
								    m = (v+v).asDiagonal() * m;
							 | 
						|
								    VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  {
							 | 
						|
								    // test deferred resizing in Matrix::operator=
							 | 
						|
								    MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a;
							 | 
						|
								    VERIFY_IS_APPROX((a = a * b), (c * b).eval());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  {
							 | 
						|
								    // check the functions to setup blocking sizes compile and do not segfault
							 | 
						|
								    // FIXME check they do what they are supposed to do !!
							 | 
						|
								    std::ptrdiff_t l1 = internal::random<int>(10000,20000);
							 | 
						|
								    std::ptrdiff_t l2 = internal::random<int>(1000000,2000000);
							 | 
						|
								    setCpuCacheSizes(l1,l2);
							 | 
						|
								    VERIFY(l1==l1CacheSize());
							 | 
						|
								    VERIFY(l2==l2CacheSize());
							 | 
						|
								    std::ptrdiff_t k1 = internal::random<int>(10,100)*16;
							 | 
						|
								    std::ptrdiff_t m1 = internal::random<int>(10,100)*16;
							 | 
						|
								    std::ptrdiff_t n1 = internal::random<int>(10,100)*16;
							 | 
						|
								    // only makes sure it compiles fine
							 | 
						|
								    internal::computeProductBlockingSizes<float,float>(k1,m1,n1);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  {
							 | 
						|
								    // test regression in row-vector by matrix (bad Map type)
							 | 
						|
								    MatrixXf mat1(10,32); mat1.setRandom();
							 | 
						|
								    MatrixXf mat2(32,32); mat2.setRandom();
							 | 
						|
								    MatrixXf r1 = mat1.row(2)*mat2.transpose();
							 | 
						|
								    VERIFY_IS_APPROX(r1, (mat1.row(2)*mat2.transpose()).eval());
							 | 
						|
								
							 | 
						|
								    MatrixXf r2 = mat1.row(2)*mat2;
							 | 
						|
								    VERIFY_IS_APPROX(r2, (mat1.row(2)*mat2).eval());
							 | 
						|
								  }
							 | 
						|
								#endif
							 | 
						|
								}
							 |