You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							207 lines
						
					
					
						
							6.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							207 lines
						
					
					
						
							6.8 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								using namespace std;
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void lu_non_invertible()
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename MatrixType::RealScalar RealScalar;
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     LU.h
							 | 
						|
								  */
							 | 
						|
								  Index rows, cols, cols2;
							 | 
						|
								  if(MatrixType::RowsAtCompileTime==Dynamic)
							 | 
						|
								  {
							 | 
						|
								    rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								  }
							 | 
						|
								  else
							 | 
						|
								  {
							 | 
						|
								    rows = MatrixType::RowsAtCompileTime;
							 | 
						|
								  }
							 | 
						|
								  if(MatrixType::ColsAtCompileTime==Dynamic)
							 | 
						|
								  {
							 | 
						|
								    cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								    cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								  }
							 | 
						|
								  else
							 | 
						|
								  {
							 | 
						|
								    cols2 = cols = MatrixType::ColsAtCompileTime;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  enum {
							 | 
						|
								    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
							 | 
						|
								    ColsAtCompileTime = MatrixType::ColsAtCompileTime
							 | 
						|
								  };
							 | 
						|
								  typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
							 | 
						|
								  typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
							 | 
						|
								  typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
							 | 
						|
								          CMatrixType;
							 | 
						|
								  typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
							 | 
						|
								          RMatrixType;
							 | 
						|
								
							 | 
						|
								  Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
							 | 
						|
								
							 | 
						|
								  // The image of the zero matrix should consist of a single (zero) column vector
							 | 
						|
								  VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
							 | 
						|
								
							 | 
						|
								  MatrixType m1(rows, cols), m3(rows, cols2);
							 | 
						|
								  CMatrixType m2(cols, cols2);
							 | 
						|
								  createRandomPIMatrixOfRank(rank, rows, cols, m1);
							 | 
						|
								
							 | 
						|
								  FullPivLU<MatrixType> lu;
							 | 
						|
								
							 | 
						|
								  // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
							 | 
						|
								  // of singular values are either 0 or 1.
							 | 
						|
								  // So it's not clear at all that the epsilon should play any role there.
							 | 
						|
								  lu.setThreshold(RealScalar(0.01));
							 | 
						|
								  lu.compute(m1);
							 | 
						|
								
							 | 
						|
								  MatrixType u(rows,cols);
							 | 
						|
								  u = lu.matrixLU().template triangularView<Upper>();
							 | 
						|
								  RMatrixType l = RMatrixType::Identity(rows,rows);
							 | 
						|
								  l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
							 | 
						|
								    = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
							 | 
						|
								
							 | 
						|
								  KernelMatrixType m1kernel = lu.kernel();
							 | 
						|
								  ImageMatrixType m1image = lu.image(m1);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
							 | 
						|
								  VERIFY(rank == lu.rank());
							 | 
						|
								  VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
							 | 
						|
								  VERIFY(!lu.isInjective());
							 | 
						|
								  VERIFY(!lu.isInvertible());
							 | 
						|
								  VERIFY(!lu.isSurjective());
							 | 
						|
								  VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
							 | 
						|
								  VERIFY(m1image.fullPivLu().rank() == rank);
							 | 
						|
								  VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
							 | 
						|
								
							 | 
						|
								  m2 = CMatrixType::Random(cols,cols2);
							 | 
						|
								  m3 = m1*m2;
							 | 
						|
								  m2 = CMatrixType::Random(cols,cols2);
							 | 
						|
								  // test that the code, which does resize(), may be applied to an xpr
							 | 
						|
								  m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void lu_invertible()
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     LU.h
							 | 
						|
								  */
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
							 | 
						|
								  int size = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								
							 | 
						|
								  MatrixType m1(size, size), m2(size, size), m3(size, size);
							 | 
						|
								  FullPivLU<MatrixType> lu;
							 | 
						|
								  lu.setThreshold(RealScalar(0.01));
							 | 
						|
								  do {
							 | 
						|
								    m1 = MatrixType::Random(size,size);
							 | 
						|
								    lu.compute(m1);
							 | 
						|
								  } while(!lu.isInvertible());
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
							 | 
						|
								  VERIFY(0 == lu.dimensionOfKernel());
							 | 
						|
								  VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
							 | 
						|
								  VERIFY(size == lu.rank());
							 | 
						|
								  VERIFY(lu.isInjective());
							 | 
						|
								  VERIFY(lu.isSurjective());
							 | 
						|
								  VERIFY(lu.isInvertible());
							 | 
						|
								  VERIFY(lu.image(m1).fullPivLu().isInvertible());
							 | 
						|
								  m3 = MatrixType::Random(size,size);
							 | 
						|
								  m2 = lu.solve(m3);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								  VERIFY_IS_APPROX(m2, lu.inverse()*m3);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void lu_partial_piv()
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     PartialPivLU.h
							 | 
						|
								  */
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
							 | 
						|
								  Index rows = internal::random<Index>(1,4);
							 | 
						|
								  Index cols = rows;
							 | 
						|
								
							 | 
						|
								  MatrixType m1(cols, rows);
							 | 
						|
								  m1.setRandom();
							 | 
						|
								  PartialPivLU<MatrixType> plu(m1);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void lu_verify_assert()
							 | 
						|
								{
							 | 
						|
								  MatrixType tmp;
							 | 
						|
								
							 | 
						|
								  FullPivLU<MatrixType> lu;
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.matrixLU())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.permutationP())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.permutationQ())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.kernel())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.image(tmp))
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.solve(tmp))
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.determinant())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.rank())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.isInjective())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.isSurjective())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.isInvertible())
							 | 
						|
								  VERIFY_RAISES_ASSERT(lu.inverse())
							 | 
						|
								
							 | 
						|
								  PartialPivLU<MatrixType> plu;
							 | 
						|
								  VERIFY_RAISES_ASSERT(plu.matrixLU())
							 | 
						|
								  VERIFY_RAISES_ASSERT(plu.permutationP())
							 | 
						|
								  VERIFY_RAISES_ASSERT(plu.solve(tmp))
							 | 
						|
								  VERIFY_RAISES_ASSERT(plu.determinant())
							 | 
						|
								  VERIFY_RAISES_ASSERT(plu.inverse())
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_lu()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
							 | 
						|
								    CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
							 | 
						|
								    CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
							 | 
						|
								    CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
							 | 
						|
								    CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
							 | 
						|
								    CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
							 | 
						|
								    CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
							 | 
						|
								    CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
							 | 
						|
								    CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() );
							 | 
						|
								    CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
							 | 
						|
								
							 | 
						|
								    // Test problem size constructors
							 | 
						|
								    CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
							 | 
						|
								    CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
							 | 
						|
								  }
							 | 
						|
								}
							 |