You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							146 lines
						
					
					
						
							6.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							146 lines
						
					
					
						
							6.5 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <limits>
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
							 | 
						|
								  */
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
							 | 
						|
								  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
							 | 
						|
								
							 | 
						|
								  RealScalar largerEps = 10*test_precision<RealScalar>();
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType a1 = MatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
							 | 
						|
								  symmA.template triangularView<StrictlyUpper>().setZero();
							 | 
						|
								
							 | 
						|
								  MatrixType b = MatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType b1 = MatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
							 | 
						|
								  symmB.template triangularView<StrictlyUpper>().setZero();
							 | 
						|
								
							 | 
						|
								  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
							 | 
						|
								  SelfAdjointEigenSolver<MatrixType> eiDirect;
							 | 
						|
								  eiDirect.computeDirect(symmA);
							 | 
						|
								  // generalized eigen pb
							 | 
						|
								  GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_EQUAL(eiSymm.info(), Success);
							 | 
						|
								  VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
							 | 
						|
								          eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
							 | 
						|
								  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_EQUAL(eiDirect.info(), Success);
							 | 
						|
								  VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
							 | 
						|
								          eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
							 | 
						|
								  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());
							 | 
						|
								
							 | 
						|
								  SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
							 | 
						|
								  VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
							 | 
						|
								  VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
							 | 
						|
								  
							 | 
						|
								  // generalized eigen problem Ax = lBx
							 | 
						|
								  eiSymmGen.compute(symmA, symmB,Ax_lBx);
							 | 
						|
								  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
							 | 
						|
								  VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
							 | 
						|
								          symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
							 | 
						|
								
							 | 
						|
								  // generalized eigen problem BAx = lx
							 | 
						|
								  eiSymmGen.compute(symmA, symmB,BAx_lx);
							 | 
						|
								  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
							 | 
						|
								  VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
							 | 
						|
								         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
							 | 
						|
								
							 | 
						|
								  // generalized eigen problem ABx = lx
							 | 
						|
								  eiSymmGen.compute(symmA, symmB,ABx_lx);
							 | 
						|
								  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
							 | 
						|
								  VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
							 | 
						|
								         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
							 | 
						|
								  VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
							 | 
						|
								
							 | 
						|
								  MatrixType id = MatrixType::Identity(rows, cols);
							 | 
						|
								  VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
							 | 
						|
								
							 | 
						|
								  SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
							 | 
						|
								
							 | 
						|
								  eiSymmUninitialized.compute(symmA, false);
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
							 | 
						|
								
							 | 
						|
								  // test Tridiagonalization's methods
							 | 
						|
								  Tridiagonalization<MatrixType> tridiag(symmA);
							 | 
						|
								  // FIXME tridiag.matrixQ().adjoint() does not work
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
							 | 
						|
								  
							 | 
						|
								  if (rows > 1)
							 | 
						|
								  {
							 | 
						|
								    // Test matrix with NaN
							 | 
						|
								    symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
							 | 
						|
								    SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA);
							 | 
						|
								    VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigensolver_selfadjoint()
							 | 
						|
								{
							 | 
						|
								  int s;
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    // very important to test 3x3 and 2x2 matrices since we provide special paths for them
							 | 
						|
								    CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) );
							 | 
						|
								    CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
							 | 
						|
								    CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								    CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								    CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								    CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
							 | 
						|
								    
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								    CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
							 | 
						|
								
							 | 
						|
								    // some trivial but implementation-wise tricky cases
							 | 
						|
								    CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
							 | 
						|
								    CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
							 | 
						|
								    CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
							 | 
						|
								    CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								  CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf>(s));
							 | 
						|
								  CALL_SUBTEST_8(Tridiagonalization<MatrixXf>(s));
							 | 
						|
								  
							 | 
						|
								  EIGEN_UNUSED_VARIABLE(s)
							 | 
						|
								}
							 | 
						|
								
							 |