You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							215 lines
						
					
					
						
							7.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							215 lines
						
					
					
						
							7.7 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#define EIGEN_NO_STATIC_ASSERT
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void basicStuff(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  // this test relies a lot on Random.h, and there's not much more that we can do
							 | 
						|
								  // to test it, hence I consider that we will have tested Random.h
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols),
							 | 
						|
								             mzero = MatrixType::Zero(rows, cols),
							 | 
						|
								             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
							 | 
						|
								  VectorType v1 = VectorType::Random(rows),
							 | 
						|
								             vzero = VectorType::Zero(rows);
							 | 
						|
								  SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
							 | 
						|
								
							 | 
						|
								  Scalar x = 0;
							 | 
						|
								  while(x == Scalar(0)) x = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  Index r = internal::random<Index>(0, rows-1),
							 | 
						|
								        c = internal::random<Index>(0, cols-1);
							 | 
						|
								
							 | 
						|
								  m1.coeffRef(r,c) = x;
							 | 
						|
								  VERIFY_IS_APPROX(x, m1.coeff(r,c));
							 | 
						|
								  m1(r,c) = x;
							 | 
						|
								  VERIFY_IS_APPROX(x, m1(r,c));
							 | 
						|
								  v1.coeffRef(r) = x;
							 | 
						|
								  VERIFY_IS_APPROX(x, v1.coeff(r));
							 | 
						|
								  v1(r) = x;
							 | 
						|
								  VERIFY_IS_APPROX(x, v1(r));
							 | 
						|
								  v1[r] = x;
							 | 
						|
								  VERIFY_IS_APPROX(x, v1[r]);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(               v1,    v1);
							 | 
						|
								  VERIFY_IS_NOT_APPROX(           v1,    2*v1);
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
							 | 
						|
								  if(!NumTraits<Scalar>::IsInteger)
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.norm());
							 | 
						|
								  VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
							 | 
						|
								  VERIFY_IS_APPROX(               vzero, v1-v1);
							 | 
						|
								  VERIFY_IS_APPROX(               m1,    m1);
							 | 
						|
								  VERIFY_IS_NOT_APPROX(           m1,    2*m1);
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
							 | 
						|
								  VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
							 | 
						|
								  VERIFY_IS_APPROX(               mzero, m1-m1);
							 | 
						|
								
							 | 
						|
								  // always test operator() on each read-only expression class,
							 | 
						|
								  // in order to check const-qualifiers.
							 | 
						|
								  // indeed, if an expression class (here Zero) is meant to be read-only,
							 | 
						|
								  // hence has no _write() method, the corresponding MatrixBase method (here zero())
							 | 
						|
								  // should return a const-qualified object so that it is the const-qualified
							 | 
						|
								  // operator() that gets called, which in turn calls _read().
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
							 | 
						|
								
							 | 
						|
								  // now test copying a row-vector into a (column-)vector and conversely.
							 | 
						|
								  square.col(r) = square.row(r).eval();
							 | 
						|
								  Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
							 | 
						|
								  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
							 | 
						|
								  rv = square.row(r);
							 | 
						|
								  cv = square.col(r);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(rv, cv.transpose());
							 | 
						|
								
							 | 
						|
								  if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  if(cols!=1 && rows!=1)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_RAISES_ASSERT(m1[0]);
							 | 
						|
								    VERIFY_RAISES_ASSERT((m1+m1)[0]);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m3 = m1,m1);
							 | 
						|
								  MatrixType m4;
							 | 
						|
								  VERIFY_IS_APPROX(m4 = m1,m1);
							 | 
						|
								
							 | 
						|
								  m3.real() = m1.real();
							 | 
						|
								  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
							 | 
						|
								  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
							 | 
						|
								
							 | 
						|
								  // check == / != operators
							 | 
						|
								  VERIFY(m1==m1);
							 | 
						|
								  VERIFY(m1!=m2);
							 | 
						|
								  VERIFY(!(m1==m2));
							 | 
						|
								  VERIFY(!(m1!=m1));
							 | 
						|
								  m1 = m2;
							 | 
						|
								  VERIFY(m1==m2);
							 | 
						|
								  VERIFY(!(m1!=m2));
							 | 
						|
								  
							 | 
						|
								  // check automatic transposition
							 | 
						|
								  sm2.setZero();
							 | 
						|
								  for(typename MatrixType::Index i=0;i<rows;++i)
							 | 
						|
								    sm2.col(i) = sm1.row(i);
							 | 
						|
								  VERIFY_IS_APPROX(sm2,sm1.transpose());
							 | 
						|
								  
							 | 
						|
								  sm2.setZero();
							 | 
						|
								  for(typename MatrixType::Index i=0;i<rows;++i)
							 | 
						|
								    sm2.col(i).noalias() = sm1.row(i);
							 | 
						|
								  VERIFY_IS_APPROX(sm2,sm1.transpose());
							 | 
						|
								  
							 | 
						|
								  sm2.setZero();
							 | 
						|
								  for(typename MatrixType::Index i=0;i<rows;++i)
							 | 
						|
								    sm2.col(i).noalias() += sm1.row(i);
							 | 
						|
								  VERIFY_IS_APPROX(sm2,sm1.transpose());
							 | 
						|
								  
							 | 
						|
								  sm2.setZero();
							 | 
						|
								  for(typename MatrixType::Index i=0;i<rows;++i)
							 | 
						|
								    sm2.col(i).noalias() -= sm1.row(i);
							 | 
						|
								  VERIFY_IS_APPROX(sm2,-sm1.transpose());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>(),
							 | 
						|
								         s2 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  VERIFY(internal::real(s1)==internal::real_ref(s1));
							 | 
						|
								  VERIFY(internal::imag(s1)==internal::imag_ref(s1));
							 | 
						|
								  internal::real_ref(s1) = internal::real(s2);
							 | 
						|
								  internal::imag_ref(s1) = internal::imag(s2);
							 | 
						|
								  VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
							 | 
						|
								  // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
							 | 
						|
								
							 | 
						|
								  RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
							 | 
						|
								                 rm2 = RealMatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType cm(rows,cols);
							 | 
						|
								  cm.real() = rm1;
							 | 
						|
								  cm.imag() = rm2;
							 | 
						|
								  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
							 | 
						|
								  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
							 | 
						|
								  rm1.setZero();
							 | 
						|
								  rm2.setZero();
							 | 
						|
								  rm1 = cm.real();
							 | 
						|
								  rm2 = cm.imag();
							 | 
						|
								  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
							 | 
						|
								  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
							 | 
						|
								  cm.real().setZero();
							 | 
						|
								  VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
							 | 
						|
								  VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#ifdef EIGEN_TEST_PART_2
							 | 
						|
								void casting()
							 | 
						|
								{
							 | 
						|
								  Matrix4f m = Matrix4f::Random(), m2;
							 | 
						|
								  Matrix4d n = m.cast<double>();
							 | 
						|
								  VERIFY(m.isApprox(n.cast<float>()));
							 | 
						|
								  m2 = m.cast<float>(); // check the specialization when NewType == Type
							 | 
						|
								  VERIFY(m.isApprox(m2));
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								template <typename Scalar>
							 | 
						|
								void fixedSizeMatrixConstruction()
							 | 
						|
								{
							 | 
						|
								  const Scalar raw[3] = {1,2,3};
							 | 
						|
								  Matrix<Scalar,3,1> m(raw);
							 | 
						|
								  Array<Scalar,3,1> a(raw);
							 | 
						|
								  VERIFY(m(0) == 1);
							 | 
						|
								  VERIFY(m(1) == 2);
							 | 
						|
								  VERIFY(m(2) == 3);
							 | 
						|
								  VERIFY(a(0) == 1);
							 | 
						|
								  VERIFY(a(1) == 2);
							 | 
						|
								  VERIFY(a(2) == 3);  
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_basicstuff()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( basicStuff(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
							 | 
						|
								    CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
							 | 
						|
								  CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
							 | 
						|
								  CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST_2(casting());
							 | 
						|
								}
							 |