You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							141 lines
						
					
					
						
							5.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							141 lines
						
					
					
						
							5.6 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#define EIGEN_NO_STATIC_ASSERT
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void adjoint(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     Transpose.h Conjugate.h Dot.h
							 | 
						|
								  */
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
							 | 
						|
								  
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols),
							 | 
						|
								             square = SquareMatrixType::Random(rows, rows);
							 | 
						|
								  VectorType v1 = VectorType::Random(rows),
							 | 
						|
								             v2 = VectorType::Random(rows),
							 | 
						|
								             v3 = VectorType::Random(rows),
							 | 
						|
								             vzero = VectorType::Zero(rows);
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>(),
							 | 
						|
								         s2 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  // check basic compatibility of adjoint, transpose, conjugate
							 | 
						|
								  VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
							 | 
						|
								  VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
							 | 
						|
								
							 | 
						|
								  // check multiplicative behavior
							 | 
						|
								  VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
							 | 
						|
								  VERIFY_IS_APPROX((s1 * m1).adjoint(),                     internal::conj(s1) * m1.adjoint());
							 | 
						|
								
							 | 
						|
								  // check basic properties of dot, norm, norm2
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  
							 | 
						|
								  RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
							 | 
						|
								  VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     internal::conj(s1) * v1.dot(v3) + internal::conj(s2) * v2.dot(v3), ref));
							 | 
						|
								  VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref));
							 | 
						|
								  VERIFY_IS_APPROX(internal::conj(v1.dot(v2)),               v2.dot(v1));
							 | 
						|
								  VERIFY_IS_APPROX(internal::real(v1.dot(v1)),                v1.squaredNorm());
							 | 
						|
								  if(!NumTraits<Scalar>::IsInteger) {
							 | 
						|
								    VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm());
							 | 
						|
								    // check normalized() and normalize()
							 | 
						|
								    VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
							 | 
						|
								    v3 = v1;
							 | 
						|
								    v3.normalize();
							 | 
						|
								    VERIFY_IS_APPROX(v1, v1.norm() * v3);
							 | 
						|
								    VERIFY_IS_APPROX(v3, v1.normalized());
							 | 
						|
								    VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
							 | 
						|
								  }
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(vzero.dot(v1)),  static_cast<RealScalar>(1));
							 | 
						|
								  
							 | 
						|
								  // check compatibility of dot and adjoint
							 | 
						|
								  
							 | 
						|
								  ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
							 | 
						|
								  VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), ref));
							 | 
						|
								
							 | 
						|
								  // like in testBasicStuff, test operator() to check const-qualification
							 | 
						|
								  Index r = internal::random<Index>(0, rows-1),
							 | 
						|
								      c = internal::random<Index>(0, cols-1);
							 | 
						|
								  VERIFY_IS_APPROX(m1.conjugate()(r,c), internal::conj(m1(r,c)));
							 | 
						|
								  VERIFY_IS_APPROX(m1.adjoint()(c,r), internal::conj(m1(r,c)));
							 | 
						|
								
							 | 
						|
								  if(!NumTraits<Scalar>::IsInteger)
							 | 
						|
								  {
							 | 
						|
								    // check that Random().normalized() works: tricky as the random xpr must be evaluated by
							 | 
						|
								    // normalized() in order to produce a consistent result.
							 | 
						|
								    VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // check inplace transpose
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3.transposeInPlace();
							 | 
						|
								  VERIFY_IS_APPROX(m3,m1.transpose());
							 | 
						|
								  m3.transposeInPlace();
							 | 
						|
								  VERIFY_IS_APPROX(m3,m1);
							 | 
						|
								
							 | 
						|
								  // check inplace adjoint
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3.adjointInPlace();
							 | 
						|
								  VERIFY_IS_APPROX(m3,m1.adjoint());
							 | 
						|
								  m3.transposeInPlace();
							 | 
						|
								  VERIFY_IS_APPROX(m3,m1.conjugate());
							 | 
						|
								
							 | 
						|
								  // check mixed dot product
							 | 
						|
								  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
							 | 
						|
								  RealVectorType rv1 = RealVectorType::Random(rows);
							 | 
						|
								  VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
							 | 
						|
								  VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_adjoint()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( adjoint(Matrix3d()) );
							 | 
						|
								    CALL_SUBTEST_3( adjoint(Matrix4f()) );
							 | 
						|
								    CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
							 | 
						|
								    CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								  // test a large static matrix only once
							 | 
						|
								  CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
							 | 
						|
								
							 | 
						|
								#ifdef EIGEN_TEST_PART_4
							 | 
						|
								  {
							 | 
						|
								    MatrixXcf a(10,10), b(10,10);
							 | 
						|
								    VERIFY_RAISES_ASSERT(a = a.transpose());
							 | 
						|
								    VERIFY_RAISES_ASSERT(a = a.transpose() + b);
							 | 
						|
								    VERIFY_RAISES_ASSERT(a = b + a.transpose());
							 | 
						|
								    VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
							 | 
						|
								    VERIFY_RAISES_ASSERT(a = a.adjoint());
							 | 
						|
								    VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
							 | 
						|
								    VERIFY_RAISES_ASSERT(a = b + a.adjoint());
							 | 
						|
								
							 | 
						|
								    // no assertion should be triggered for these cases:
							 | 
						|
								    a.transpose() = a.transpose();
							 | 
						|
								    a.transpose() += a.transpose();
							 | 
						|
								    a.transpose() += a.transpose() + b;
							 | 
						|
								    a.transpose() = a.adjoint();
							 | 
						|
								    a.transpose() += a.adjoint();
							 | 
						|
								    a.transpose() += a.adjoint() + b;
							 | 
						|
								  }
							 | 
						|
								#endif
							 | 
						|
								}
							 | 
						|
								
							 |