You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

185 lines
12 KiB

#include "storm/models/sparse/NondeterministicModel.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/adapters/CarlAdapter.h"
#include "storm/exceptions/InvalidOperationException.h"
namespace storm {
namespace models {
namespace sparse {
template<typename ValueType, typename RewardModelType>
NondeterministicModel<ValueType, RewardModelType>::NondeterministicModel(storm::models::ModelType const& modelType,
storm::storage::SparseMatrix<ValueType> const& transitionMatrix,
storm::models::sparse::StateLabeling const& stateLabeling,
std::unordered_map<std::string, RewardModelType> const& rewardModels,
boost::optional<std::vector<LabelSet>> const& optionalChoiceLabeling)
: Model<ValueType, RewardModelType>(modelType, transitionMatrix, stateLabeling, rewardModels, optionalChoiceLabeling) {
// Intentionally left empty.
}
template<typename ValueType, typename RewardModelType>
NondeterministicModel<ValueType, RewardModelType>::NondeterministicModel(storm::models::ModelType const& modelType,
storm::storage::SparseMatrix<ValueType>&& transitionMatrix,
storm::models::sparse::StateLabeling&& stateLabeling,
std::unordered_map<std::string, RewardModelType>&& rewardModels,
boost::optional<std::vector<LabelSet>>&& optionalChoiceLabeling)
: Model<ValueType, RewardModelType>(modelType, std::move(transitionMatrix), std::move(stateLabeling), std::move(rewardModels),
std::move(optionalChoiceLabeling)) {
// Intentionally left empty.
}
template<typename ValueType, typename RewardModelType>
uint_fast64_t NondeterministicModel<ValueType, RewardModelType>::getNumberOfChoices() const {
return this->getTransitionMatrix().getRowCount();
}
template<typename ValueType, typename RewardModelType>
std::vector<uint_fast64_t> const& NondeterministicModel<ValueType, RewardModelType>::getNondeterministicChoiceIndices() const {
return this->getTransitionMatrix().getRowGroupIndices();
}
template<typename ValueType, typename RewardModelType>
uint_fast64_t NondeterministicModel<ValueType, RewardModelType>::getNumberOfChoices(uint_fast64_t state) const {
auto indices = this->getNondeterministicChoiceIndices();
return indices[state+1] - indices[state];
}
template<typename ValueType, typename RewardModelType>
void NondeterministicModel<ValueType, RewardModelType>::modifyStateActionRewards(RewardModelType& rewardModel, std::map<std::pair<uint_fast64_t, LabelSet>, typename RewardModelType::ValueType> const& modifications) const {
STORM_LOG_THROW(rewardModel.hasStateActionRewards(), storm::exceptions::InvalidOperationException, "Cannot modify state-action rewards, because the reward model does not have state-action rewards.");
STORM_LOG_THROW(this->hasChoiceLabeling(), storm::exceptions::InvalidOperationException, "Cannot modify state-action rewards, because the model does not have an action labeling.");
std::vector<LabelSet> const& choiceLabels = this->getChoiceLabeling();
for (auto const& modification : modifications) {
uint_fast64_t stateIndex = modification.first.first;
for (uint_fast64_t row = this->getNondeterministicChoiceIndices()[stateIndex]; row < this->getNondeterministicChoiceIndices()[stateIndex + 1]; ++row) {
// If the action label of the row matches the requested one, we set the reward value accordingly.
if (choiceLabels[row] == modification.first.second) {
rewardModel.setStateActionRewardValue(row, modification.second);
}
}
}
}
template<typename ValueType, typename RewardModelType>
template<typename T>
void NondeterministicModel<ValueType, RewardModelType>::modifyStateActionRewards(std::string const& modelName, std::map<uint_fast64_t, T> const& modifications) {
RewardModelType& rewardModel = this->rewardModel(modelName);
size_t i = 0;
for(auto const& mod : modifications) {
std::cout << i++ << "/" << modifications.size() << std::endl;
rewardModel.setStateActionReward(mod.first, mod.second);
}
}
template<typename ValueType, typename RewardModelType>
template<typename T>
void NondeterministicModel<ValueType, RewardModelType>::modifyStateRewards(std::string const& modelName, std::map<uint_fast64_t, T> const& modifications) {
RewardModelType& rewardModel = this->rewardModel(modelName);
for(auto const& mod : modifications) {
rewardModel.setStateReward(mod.first, mod.second);
}
}
template<typename ValueType, typename RewardModelType>
void NondeterministicModel<ValueType, RewardModelType>::reduceToStateBasedRewards() {
for (auto& rewardModel : this->getRewardModels()) {
rewardModel.second.reduceToStateBasedRewards(this->getTransitionMatrix(), false);
}
}
template<typename ValueType, typename RewardModelType>
void NondeterministicModel<ValueType, RewardModelType>::printModelInformationToStream(std::ostream& out) const {
this->printModelInformationHeaderToStream(out);
out << "Choices: \t" << this->getNumberOfChoices() << std::endl;
this->printModelInformationFooterToStream(out);
}
template<typename ValueType, typename RewardModelType>
void NondeterministicModel<ValueType, RewardModelType>::writeDotToStream(std::ostream& outStream, bool includeLabeling, storm::storage::BitVector const* subsystem, std::vector<ValueType> const* firstValue, std::vector<ValueType> const* secondValue, std::vector<uint_fast64_t> const* stateColoring, std::vector<std::string> const* colors, std::vector<uint_fast64_t>* scheduler, bool finalizeOutput) const {
Model<ValueType, RewardModelType>::writeDotToStream(outStream, includeLabeling, subsystem, firstValue, secondValue, stateColoring, colors, scheduler, false);
// Write the probability distributions for all the states.
for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) {
uint_fast64_t rowCount = this->getNondeterministicChoiceIndices()[state + 1] - this->getNondeterministicChoiceIndices()[state];
bool highlightChoice = true;
// For this, we need to iterate over all available nondeterministic choices in the current state.
for (uint_fast64_t choice = 0; choice < rowCount; ++choice) {
uint_fast64_t rowIndex = this->getNondeterministicChoiceIndices()[state] + choice;
typename storm::storage::SparseMatrix<ValueType>::const_rows row = this->getTransitionMatrix().getRow(rowIndex);
if (scheduler != nullptr) {
// If the scheduler picked the current choice, we will not make it dotted, but highlight it.
if ((*scheduler)[state] == choice) {
highlightChoice = true;
} else {
highlightChoice = false;
}
}
// For each nondeterministic choice, we draw an arrow to an intermediate node to better display
// the grouping of transitions.
outStream << "\t\"" << state << "c" << choice << "\" [shape = \"point\"";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << ", fillcolor=\"red\"";
}
}
outStream << "];" << std::endl;
outStream << "\t" << state << " -> \"" << state << "c" << choice << "\" [ label= \"" << rowIndex << "\"";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << ", color=\"red\", penwidth = 2";
} else {
outStream << ", style = \"dotted\"";
}
}
outStream << "];" << std::endl;
// Now draw all probabilitic arcs that belong to this nondeterminstic choice.
for (auto const& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.getColumn())) {
outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.getColumn() << " [ label= \"" << transition.getValue() << "\" ]";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << " [color=\"red\", penwidth = 2]";
} else {
outStream << " [style = \"dotted\"]";
}
}
outStream << ";" << std::endl;
}
}
}
}
if (finalizeOutput) {
outStream << "}" << std::endl;
}
}
template class NondeterministicModel<double>;
template class NondeterministicModel<float>;
#ifdef STORM_HAVE_CARL
template class NondeterministicModel<storm::RationalNumber>;
template class NondeterministicModel<double, storm::models::sparse::StandardRewardModel<storm::Interval>>;
template void NondeterministicModel<double, storm::models::sparse::StandardRewardModel<storm::Interval>>::modifyStateActionRewards(std::string const& modelName, std::map<uint_fast64_t, double> const& modifications);
template void NondeterministicModel<double, storm::models::sparse::StandardRewardModel<storm::Interval>>::modifyStateRewards(std::string const& modelName, std::map<uint_fast64_t, double> const& modifications);
template class NondeterministicModel<storm::RationalFunction>;
#endif
}
}
}