You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

3118 lines
100 KiB

/* glpspx02.c (dual simplex method) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpspx.h"
#define GLP_DEBUG 1
#if 0
#define GLP_LONG_STEP 1
#endif
struct csa
{ /* common storage area */
/*--------------------------------------------------------------*/
/* LP data */
int m;
/* number of rows (auxiliary variables), m > 0 */
int n;
/* number of columns (structural variables), n > 0 */
char *type; /* char type[1+m+n]; */
/* type[0] is not used;
type[k], 1 <= k <= m+n, is the type of variable x[k]:
GLP_FR - free variable
GLP_LO - variable with lower bound
GLP_UP - variable with upper bound
GLP_DB - double-bounded variable
GLP_FX - fixed variable */
double *lb; /* double lb[1+m+n]; */
/* lb[0] is not used;
lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
if x[k] has no lower bound, lb[k] is zero */
double *ub; /* double ub[1+m+n]; */
/* ub[0] is not used;
ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
if x[k] has no upper bound, ub[k] is zero;
if x[k] is of fixed type, ub[k] is the same as lb[k] */
double *coef; /* double coef[1+m+n]; */
/* coef[0] is not used;
coef[k], 1 <= k <= m+n, is an objective coefficient at
variable x[k] */
/*--------------------------------------------------------------*/
/* original bounds of variables */
char *orig_type; /* char orig_type[1+m+n]; */
double *orig_lb; /* double orig_lb[1+m+n]; */
double *orig_ub; /* double orig_ub[1+m+n]; */
/*--------------------------------------------------------------*/
/* original objective function */
double *obj; /* double obj[1+n]; */
/* obj[0] is a constant term of the original objective function;
obj[j], 1 <= j <= n, is an original objective coefficient at
structural variable x[m+j] */
double zeta;
/* factor used to scale original objective coefficients; its
sign defines original optimization direction: zeta > 0 means
minimization, zeta < 0 means maximization */
/*--------------------------------------------------------------*/
/* constraint matrix A; it has m rows and n columns and is stored
by columns */
int *A_ptr; /* int A_ptr[1+n+1]; */
/* A_ptr[0] is not used;
A_ptr[j], 1 <= j <= n, is starting position of j-th column in
arrays A_ind and A_val; note that A_ptr[1] is always 1;
A_ptr[n+1] indicates the position after the last element in
arrays A_ind and A_val */
int *A_ind; /* int A_ind[A_ptr[n+1]]; */
/* row indices */
double *A_val; /* double A_val[A_ptr[n+1]]; */
/* non-zero element values */
#if 1 /* 06/IV-2009 */
/* constraint matrix A stored by rows */
int *AT_ptr; /* int AT_ptr[1+m+1]; */
/* AT_ptr[0] is not used;
AT_ptr[i], 1 <= i <= m, is starting position of i-th row in
arrays AT_ind and AT_val; note that AT_ptr[1] is always 1;
AT_ptr[m+1] indicates the position after the last element in
arrays AT_ind and AT_val */
int *AT_ind; /* int AT_ind[AT_ptr[m+1]]; */
/* column indices */
double *AT_val; /* double AT_val[AT_ptr[m+1]]; */
/* non-zero element values */
#endif
/*--------------------------------------------------------------*/
/* basis header */
int *head; /* int head[1+m+n]; */
/* head[0] is not used;
head[i], 1 <= i <= m, is the ordinal number of basic variable
xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of
matrix B is k-th column of matrix (I|-A);
head[m+j], 1 <= j <= n, is the ordinal number of non-basic
variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th
column of matrix N is k-th column of matrix (I|-A) */
#if 1 /* 06/IV-2009 */
int *bind; /* int bind[1+m+n]; */
/* bind[0] is not used;
bind[k], 1 <= k <= m+n, is the position of k-th column of the
matrix (I|-A) in the matrix (B|N); that is, bind[k] = k' means
that head[k'] = k */
#endif
char *stat; /* char stat[1+n]; */
/* stat[0] is not used;
stat[j], 1 <= j <= n, is the status of non-basic variable
xN[j], which defines its active bound:
GLP_NL - lower bound is active
GLP_NU - upper bound is active
GLP_NF - free variable
GLP_NS - fixed variable */
/*--------------------------------------------------------------*/
/* matrix B is the basis matrix; it is composed from columns of
the augmented constraint matrix (I|-A) corresponding to basic
variables and stored in a factorized (invertable) form */
int valid;
/* factorization is valid only if this flag is set */
BFD *bfd; /* BFD bfd[1:m,1:m]; */
/* factorized (invertable) form of the basis matrix */
#if 0 /* 06/IV-2009 */
/*--------------------------------------------------------------*/
/* matrix N is a matrix composed from columns of the augmented
constraint matrix (I|-A) corresponding to non-basic variables
except fixed ones; it is stored by rows and changes every time
the basis changes */
int *N_ptr; /* int N_ptr[1+m+1]; */
/* N_ptr[0] is not used;
N_ptr[i], 1 <= i <= m, is starting position of i-th row in
arrays N_ind and N_val; note that N_ptr[1] is always 1;
N_ptr[m+1] indicates the position after the last element in
arrays N_ind and N_val */
int *N_len; /* int N_len[1+m]; */
/* N_len[0] is not used;
N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */
int *N_ind; /* int N_ind[N_ptr[m+1]]; */
/* column indices */
double *N_val; /* double N_val[N_ptr[m+1]]; */
/* non-zero element values */
#endif
/*--------------------------------------------------------------*/
/* working parameters */
int phase;
/* search phase:
0 - not determined yet
1 - search for dual feasible solution
2 - search for optimal solution */
#if 0 /* 10/VI-2013 */
glp_long tm_beg;
#else
double tm_beg;
#endif
/* time value at the beginning of the search */
int it_beg;
/* simplex iteration count at the beginning of the search */
int it_cnt;
/* simplex iteration count; it increases by one every time the
basis changes */
int it_dpy;
/* simplex iteration count at the most recent display output */
/*--------------------------------------------------------------*/
/* basic solution components */
double *bbar; /* double bbar[1+m]; */
/* bbar[0] is not used on phase I; on phase II it is the current
value of the original objective function;
bbar[i], 1 <= i <= m, is primal value of basic variable xB[i]
(if xB[i] is free, its primal value is not updated) */
double *cbar; /* double cbar[1+n]; */
/* cbar[0] is not used;
cbar[j], 1 <= j <= n, is reduced cost of non-basic variable
xN[j] (if xN[j] is fixed, its reduced cost is not updated) */
/*--------------------------------------------------------------*/
/* the following pricing technique options may be used:
GLP_PT_STD - standard ("textbook") pricing;
GLP_PT_PSE - projected steepest edge;
GLP_PT_DVX - Devex pricing (not implemented yet);
in case of GLP_PT_STD the reference space is not used, and all
steepest edge coefficients are set to 1 */
int refct;
/* this count is set to an initial value when the reference space
is defined and decreases by one every time the basis changes;
once this count reaches zero, the reference space is redefined
again */
char *refsp; /* char refsp[1+m+n]; */
/* refsp[0] is not used;
refsp[k], 1 <= k <= m+n, is the flag which means that variable
x[k] belongs to the current reference space */
double *gamma; /* double gamma[1+m]; */
/* gamma[0] is not used;
gamma[i], 1 <= i <= n, is the steepest edge coefficient for
basic variable xB[i]; if xB[i] is free, gamma[i] is not used
and just set to 1 */
/*--------------------------------------------------------------*/
/* basic variable xB[p] chosen to leave the basis */
int p;
/* index of the basic variable xB[p] chosen, 1 <= p <= m;
if the set of eligible basic variables is empty (i.e. if the
current basic solution is primal feasible within a tolerance)
and thus no variable has been chosen, p is set to 0 */
double delta;
/* change of xB[p] in the adjacent basis;
delta > 0 means that xB[p] violates its lower bound and will
increase to achieve it in the adjacent basis;
delta < 0 means that xB[p] violates its upper bound and will
decrease to achieve it in the adjacent basis */
/*--------------------------------------------------------------*/
/* pivot row of the simplex table corresponding to basic variable
xB[p] chosen is the following vector:
T' * e[p] = - N' * inv(B') * e[p] = - N' * rho,
where B' is a matrix transposed to the current basis matrix,
N' is a matrix, whose rows are columns of the matrix (I|-A)
corresponding to non-basic non-fixed variables */
int trow_nnz;
/* number of non-zero components, 0 <= nnz <= n */
int *trow_ind; /* int trow_ind[1+n]; */
/* trow_ind[0] is not used;
trow_ind[t], 1 <= t <= nnz, is an index of non-zero component,
i.e. trow_ind[t] = j means that trow_vec[j] != 0 */
double *trow_vec; /* int trow_vec[1+n]; */
/* trow_vec[0] is not used;
trow_vec[j], 1 <= j <= n, is a numeric value of j-th component
of the row */
double trow_max;
/* infinity (maximum) norm of the row (max |trow_vec[j]|) */
int trow_num;
/* number of significant non-zero components, which means that:
|trow_vec[j]| >= eps for j in trow_ind[1,...,num],
|tcol_vec[j]| < eps for j in trow_ind[num+1,...,nnz],
where eps is a pivot tolerance */
/*--------------------------------------------------------------*/
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
int nbps;
/* number of breakpoints, 0 <= nbps <= n */
struct bkpt
{ int j;
/* index of non-basic variable xN[j], 1 <= j <= n */
double t;
/* value of dual ray parameter at breakpoint, t >= 0 */
double dz;
/* dz = zeta(t = t[k]) - zeta(t = 0) */
} *bkpt; /* struct bkpt bkpt[1+n]; */
/* bkpt[0] is not used;
bkpt[k], 1 <= k <= nbps, is k-th breakpoint of the dual
objective */
#endif
/*--------------------------------------------------------------*/
/* non-basic variable xN[q] chosen to enter the basis */
int q;
/* index of the non-basic variable xN[q] chosen, 1 <= q <= n;
if no variable has been chosen, q is set to 0 */
double new_dq;
/* reduced cost of xN[q] in the adjacent basis (it is the change
of lambdaB[p]) */
/*--------------------------------------------------------------*/
/* pivot column of the simplex table corresponding to non-basic
variable xN[q] chosen is the following vector:
T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
where B is the current basis matrix, N[q] is a column of the
matrix (I|-A) corresponding to xN[q] */
int tcol_nnz;
/* number of non-zero components, 0 <= nnz <= m */
int *tcol_ind; /* int tcol_ind[1+m]; */
/* tcol_ind[0] is not used;
tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component,
i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */
double *tcol_vec; /* double tcol_vec[1+m]; */
/* tcol_vec[0] is not used;
tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component
of the column */
/*--------------------------------------------------------------*/
/* working arrays */
double *work1; /* double work1[1+m]; */
double *work2; /* double work2[1+m]; */
double *work3; /* double work3[1+m]; */
double *work4; /* double work4[1+m]; */
};
static const double kappa = 0.10;
/***********************************************************************
* alloc_csa - allocate common storage area
*
* This routine allocates all arrays in the common storage area (CSA)
* and returns a pointer to the CSA. */
static struct csa *alloc_csa(glp_prob *lp)
{ struct csa *csa;
int m = lp->m;
int n = lp->n;
int nnz = lp->nnz;
csa = xmalloc(sizeof(struct csa));
xassert(m > 0 && n > 0);
csa->m = m;
csa->n = n;
csa->type = xcalloc(1+m+n, sizeof(char));
csa->lb = xcalloc(1+m+n, sizeof(double));
csa->ub = xcalloc(1+m+n, sizeof(double));
csa->coef = xcalloc(1+m+n, sizeof(double));
csa->orig_type = xcalloc(1+m+n, sizeof(char));
csa->orig_lb = xcalloc(1+m+n, sizeof(double));
csa->orig_ub = xcalloc(1+m+n, sizeof(double));
csa->obj = xcalloc(1+n, sizeof(double));
csa->A_ptr = xcalloc(1+n+1, sizeof(int));
csa->A_ind = xcalloc(1+nnz, sizeof(int));
csa->A_val = xcalloc(1+nnz, sizeof(double));
#if 1 /* 06/IV-2009 */
csa->AT_ptr = xcalloc(1+m+1, sizeof(int));
csa->AT_ind = xcalloc(1+nnz, sizeof(int));
csa->AT_val = xcalloc(1+nnz, sizeof(double));
#endif
csa->head = xcalloc(1+m+n, sizeof(int));
#if 1 /* 06/IV-2009 */
csa->bind = xcalloc(1+m+n, sizeof(int));
#endif
csa->stat = xcalloc(1+n, sizeof(char));
#if 0 /* 06/IV-2009 */
csa->N_ptr = xcalloc(1+m+1, sizeof(int));
csa->N_len = xcalloc(1+m, sizeof(int));
csa->N_ind = NULL; /* will be allocated later */
csa->N_val = NULL; /* will be allocated later */
#endif
csa->bbar = xcalloc(1+m, sizeof(double));
csa->cbar = xcalloc(1+n, sizeof(double));
csa->refsp = xcalloc(1+m+n, sizeof(char));
csa->gamma = xcalloc(1+m, sizeof(double));
csa->trow_ind = xcalloc(1+n, sizeof(int));
csa->trow_vec = xcalloc(1+n, sizeof(double));
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
csa->bkpt = xcalloc(1+n, sizeof(struct bkpt));
#endif
csa->tcol_ind = xcalloc(1+m, sizeof(int));
csa->tcol_vec = xcalloc(1+m, sizeof(double));
csa->work1 = xcalloc(1+m, sizeof(double));
csa->work2 = xcalloc(1+m, sizeof(double));
csa->work3 = xcalloc(1+m, sizeof(double));
csa->work4 = xcalloc(1+m, sizeof(double));
return csa;
}
/***********************************************************************
* init_csa - initialize common storage area
*
* This routine initializes all data structures in the common storage
* area (CSA). */
static void init_csa(struct csa *csa, glp_prob *lp)
{ int m = csa->m;
int n = csa->n;
char *type = csa->type;
double *lb = csa->lb;
double *ub = csa->ub;
double *coef = csa->coef;
char *orig_type = csa->orig_type;
double *orig_lb = csa->orig_lb;
double *orig_ub = csa->orig_ub;
double *obj = csa->obj;
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
#if 1 /* 06/IV-2009 */
int *AT_ptr = csa->AT_ptr;
int *AT_ind = csa->AT_ind;
double *AT_val = csa->AT_val;
#endif
int *head = csa->head;
#if 1 /* 06/IV-2009 */
int *bind = csa->bind;
#endif
char *stat = csa->stat;
char *refsp = csa->refsp;
double *gamma = csa->gamma;
int i, j, k, loc;
double cmax;
/* auxiliary variables */
for (i = 1; i <= m; i++)
{ GLPROW *row = lp->row[i];
type[i] = (char)row->type;
lb[i] = row->lb * row->rii;
ub[i] = row->ub * row->rii;
coef[i] = 0.0;
}
/* structural variables */
for (j = 1; j <= n; j++)
{ GLPCOL *col = lp->col[j];
type[m+j] = (char)col->type;
lb[m+j] = col->lb / col->sjj;
ub[m+j] = col->ub / col->sjj;
coef[m+j] = col->coef * col->sjj;
}
/* original bounds of variables */
memcpy(&orig_type[1], &type[1], (m+n) * sizeof(char));
memcpy(&orig_lb[1], &lb[1], (m+n) * sizeof(double));
memcpy(&orig_ub[1], &ub[1], (m+n) * sizeof(double));
/* original objective function */
obj[0] = lp->c0;
memcpy(&obj[1], &coef[m+1], n * sizeof(double));
/* factor used to scale original objective coefficients */
cmax = 0.0;
for (j = 1; j <= n; j++)
if (cmax < fabs(obj[j])) cmax = fabs(obj[j]);
if (cmax == 0.0) cmax = 1.0;
switch (lp->dir)
{ case GLP_MIN:
csa->zeta = + 1.0 / cmax;
break;
case GLP_MAX:
csa->zeta = - 1.0 / cmax;
break;
default:
xassert(lp != lp);
}
#if 1
if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0;
#endif
/* scale working objective coefficients */
for (j = 1; j <= n; j++) coef[m+j] *= csa->zeta;
/* matrix A (by columns) */
loc = 1;
for (j = 1; j <= n; j++)
{ GLPAIJ *aij;
A_ptr[j] = loc;
for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
{ A_ind[loc] = aij->row->i;
A_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
loc++;
}
}
A_ptr[n+1] = loc;
xassert(loc-1 == lp->nnz);
#if 1 /* 06/IV-2009 */
/* matrix A (by rows) */
loc = 1;
for (i = 1; i <= m; i++)
{ GLPAIJ *aij;
AT_ptr[i] = loc;
for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
{ AT_ind[loc] = aij->col->j;
AT_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
loc++;
}
}
AT_ptr[m+1] = loc;
xassert(loc-1 == lp->nnz);
#endif
/* basis header */
xassert(lp->valid);
memcpy(&head[1], &lp->head[1], m * sizeof(int));
k = 0;
for (i = 1; i <= m; i++)
{ GLPROW *row = lp->row[i];
if (row->stat != GLP_BS)
{ k++;
xassert(k <= n);
head[m+k] = i;
stat[k] = (char)row->stat;
}
}
for (j = 1; j <= n; j++)
{ GLPCOL *col = lp->col[j];
if (col->stat != GLP_BS)
{ k++;
xassert(k <= n);
head[m+k] = m + j;
stat[k] = (char)col->stat;
}
}
xassert(k == n);
#if 1 /* 06/IV-2009 */
for (k = 1; k <= m+n; k++)
bind[head[k]] = k;
#endif
/* factorization of matrix B */
csa->valid = 1, lp->valid = 0;
csa->bfd = lp->bfd, lp->bfd = NULL;
#if 0 /* 06/IV-2009 */
/* matrix N (by rows) */
alloc_N(csa);
build_N(csa);
#endif
/* working parameters */
csa->phase = 0;
csa->tm_beg = xtime();
csa->it_beg = csa->it_cnt = lp->it_cnt;
csa->it_dpy = -1;
/* reference space and steepest edge coefficients */
csa->refct = 0;
memset(&refsp[1], 0, (m+n) * sizeof(char));
for (i = 1; i <= m; i++) gamma[i] = 1.0;
return;
}
#if 1 /* copied from primal */
/***********************************************************************
* invert_B - compute factorization of the basis matrix
*
* This routine computes factorization of the current basis matrix B.
*
* If the operation is successful, the routine returns zero, otherwise
* non-zero. */
static int inv_col(void *info, int i, int ind[], double val[])
{ /* this auxiliary routine returns row indices and numeric values
of non-zero elements of i-th column of the basis matrix */
struct csa *csa = info;
int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int *head = csa->head;
int k, len, ptr, t;
#ifdef GLP_DEBUG
xassert(1 <= i && i <= m);
#endif
k = head[i]; /* B[i] is k-th column of (I|-A) */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (k <= m)
{ /* B[i] is k-th column of submatrix I */
len = 1;
ind[1] = k;
val[1] = 1.0;
}
else
{ /* B[i] is (k-m)-th column of submatrix (-A) */
ptr = A_ptr[k-m];
len = A_ptr[k-m+1] - ptr;
memcpy(&ind[1], &A_ind[ptr], len * sizeof(int));
memcpy(&val[1], &A_val[ptr], len * sizeof(double));
for (t = 1; t <= len; t++) val[t] = - val[t];
}
return len;
}
static int invert_B(struct csa *csa)
{ int ret;
ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa);
csa->valid = (ret == 0);
return ret;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* update_B - update factorization of the basis matrix
*
* This routine replaces i-th column of the basis matrix B by k-th
* column of the augmented constraint matrix (I|-A) and then updates
* the factorization of B.
*
* If the factorization has been successfully updated, the routine
* returns zero, otherwise non-zero. */
static int update_B(struct csa *csa, int i, int k)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
int ret;
#ifdef GLP_DEBUG
xassert(1 <= i && i <= m);
xassert(1 <= k && k <= m+n);
#endif
if (k <= m)
{ /* new i-th column of B is k-th column of I */
int ind[1+1];
double val[1+1];
ind[1] = k;
val[1] = 1.0;
xassert(csa->valid);
ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val);
}
else
{ /* new i-th column of B is (k-m)-th column of (-A) */
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
double *val = csa->work1;
int beg, end, ptr, len;
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
len = 0;
for (ptr = beg; ptr < end; ptr++)
val[++len] = - A_val[ptr];
xassert(csa->valid);
ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val);
}
csa->valid = (ret == 0);
return ret;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* error_ftran - compute residual vector r = h - B * x
*
* This routine computes the residual vector r = h - B * x, where B is
* the current basis matrix, h is the vector of right-hand sides, x is
* the solution vector. */
static void error_ftran(struct csa *csa, double h[], double x[],
double r[])
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int *head = csa->head;
int i, k, beg, end, ptr;
double temp;
/* compute the residual vector:
r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m],
where B[1], ..., B[m] are columns of matrix B */
memcpy(&r[1], &h[1], m * sizeof(double));
for (i = 1; i <= m; i++)
{ temp = x[i];
if (temp == 0.0) continue;
k = head[i]; /* B[i] is k-th column of (I|-A) */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (k <= m)
{ /* B[i] is k-th column of submatrix I */
r[k] -= temp;
}
else
{ /* B[i] is (k-m)-th column of submatrix (-A) */
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
r[A_ind[ptr]] += A_val[ptr] * temp;
}
}
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* refine_ftran - refine solution of B * x = h
*
* This routine performs one iteration to refine the solution of
* the system B * x = h, where B is the current basis matrix, h is the
* vector of right-hand sides, x is the solution vector. */
static void refine_ftran(struct csa *csa, double h[], double x[])
{ int m = csa->m;
double *r = csa->work1;
double *d = csa->work1;
int i;
/* compute the residual vector r = h - B * x */
error_ftran(csa, h, x, r);
/* compute the correction vector d = inv(B) * r */
xassert(csa->valid);
bfd_ftran(csa->bfd, d);
/* refine the solution vector (new x) = (old x) + d */
for (i = 1; i <= m; i++) x[i] += d[i];
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* error_btran - compute residual vector r = h - B'* x
*
* This routine computes the residual vector r = h - B'* x, where B'
* is a matrix transposed to the current basis matrix, h is the vector
* of right-hand sides, x is the solution vector. */
static void error_btran(struct csa *csa, double h[], double x[],
double r[])
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int *head = csa->head;
int i, k, beg, end, ptr;
double temp;
/* compute the residual vector r = b - B'* x */
for (i = 1; i <= m; i++)
{ /* r[i] := b[i] - (i-th column of B)'* x */
k = head[i]; /* B[i] is k-th column of (I|-A) */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
temp = h[i];
if (k <= m)
{ /* B[i] is k-th column of submatrix I */
temp -= x[k];
}
else
{ /* B[i] is (k-m)-th column of submatrix (-A) */
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
temp += A_val[ptr] * x[A_ind[ptr]];
}
r[i] = temp;
}
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* refine_btran - refine solution of B'* x = h
*
* This routine performs one iteration to refine the solution of the
* system B'* x = h, where B' is a matrix transposed to the current
* basis matrix, h is the vector of right-hand sides, x is the solution
* vector. */
static void refine_btran(struct csa *csa, double h[], double x[])
{ int m = csa->m;
double *r = csa->work1;
double *d = csa->work1;
int i;
/* compute the residual vector r = h - B'* x */
error_btran(csa, h, x, r);
/* compute the correction vector d = inv(B') * r */
xassert(csa->valid);
bfd_btran(csa->bfd, d);
/* refine the solution vector (new x) = (old x) + d */
for (i = 1; i <= m; i++) x[i] += d[i];
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* get_xN - determine current value of non-basic variable xN[j]
*
* This routine returns the current value of non-basic variable xN[j],
* which is a value of its active bound. */
static double get_xN(struct csa *csa, int j)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
double *lb = csa->lb;
double *ub = csa->ub;
int *head = csa->head;
char *stat = csa->stat;
int k;
double xN;
#ifdef GLP_DEBUG
xassert(1 <= j && j <= n);
#endif
k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
switch (stat[j])
{ case GLP_NL:
/* x[k] is on its lower bound */
xN = lb[k]; break;
case GLP_NU:
/* x[k] is on its upper bound */
xN = ub[k]; break;
case GLP_NF:
/* x[k] is free non-basic variable */
xN = 0.0; break;
case GLP_NS:
/* x[k] is fixed non-basic variable */
xN = lb[k]; break;
default:
xassert(stat != stat);
}
return xN;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* eval_beta - compute primal values of basic variables
*
* This routine computes current primal values of all basic variables:
*
* beta = - inv(B) * N * xN,
*
* where B is the current basis matrix, N is a matrix built of columns
* of matrix (I|-A) corresponding to non-basic variables, and xN is the
* vector of current values of non-basic variables. */
static void eval_beta(struct csa *csa, double beta[])
{ int m = csa->m;
int n = csa->n;
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int *head = csa->head;
double *h = csa->work2;
int i, j, k, beg, end, ptr;
double xN;
/* compute the right-hand side vector:
h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n],
where N[1], ..., N[n] are columns of matrix N */
for (i = 1; i <= m; i++)
h[i] = 0.0;
for (j = 1; j <= n; j++)
{ k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
/* determine current value of xN[j] */
xN = get_xN(csa, j);
if (xN == 0.0) continue;
if (k <= m)
{ /* N[j] is k-th column of submatrix I */
h[k] -= xN;
}
else
{ /* N[j] is (k-m)-th column of submatrix (-A) */
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
h[A_ind[ptr]] += xN * A_val[ptr];
}
}
/* solve system B * beta = h */
memcpy(&beta[1], &h[1], m * sizeof(double));
xassert(csa->valid);
bfd_ftran(csa->bfd, beta);
/* and refine the solution */
refine_ftran(csa, h, beta);
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* eval_pi - compute vector of simplex multipliers
*
* This routine computes the vector of current simplex multipliers:
*
* pi = inv(B') * cB,
*
* where B' is a matrix transposed to the current basis matrix, cB is
* a subvector of objective coefficients at basic variables. */
static void eval_pi(struct csa *csa, double pi[])
{ int m = csa->m;
double *c = csa->coef;
int *head = csa->head;
double *cB = csa->work2;
int i;
/* construct the right-hand side vector cB */
for (i = 1; i <= m; i++)
cB[i] = c[head[i]];
/* solve system B'* pi = cB */
memcpy(&pi[1], &cB[1], m * sizeof(double));
xassert(csa->valid);
bfd_btran(csa->bfd, pi);
/* and refine the solution */
refine_btran(csa, cB, pi);
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* eval_cost - compute reduced cost of non-basic variable xN[j]
*
* This routine computes the current reduced cost of non-basic variable
* xN[j]:
*
* d[j] = cN[j] - N'[j] * pi,
*
* where cN[j] is the objective coefficient at variable xN[j], N[j] is
* a column of the augmented constraint matrix (I|-A) corresponding to
* xN[j], pi is the vector of simplex multipliers. */
static double eval_cost(struct csa *csa, double pi[], int j)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
double *coef = csa->coef;
int *head = csa->head;
int k;
double dj;
#ifdef GLP_DEBUG
xassert(1 <= j && j <= n);
#endif
k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
dj = coef[k];
if (k <= m)
{ /* N[j] is k-th column of submatrix I */
dj -= pi[k];
}
else
{ /* N[j] is (k-m)-th column of submatrix (-A) */
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int beg, end, ptr;
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
dj += A_val[ptr] * pi[A_ind[ptr]];
}
return dj;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* eval_bbar - compute and store primal values of basic variables
*
* This routine computes primal values of all basic variables and then
* stores them in the solution array. */
static void eval_bbar(struct csa *csa)
{ eval_beta(csa, csa->bbar);
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* eval_cbar - compute and store reduced costs of non-basic variables
*
* This routine computes reduced costs of all non-basic variables and
* then stores them in the solution array. */
static void eval_cbar(struct csa *csa)
{
#ifdef GLP_DEBUG
int m = csa->m;
#endif
int n = csa->n;
#ifdef GLP_DEBUG
int *head = csa->head;
#endif
double *cbar = csa->cbar;
double *pi = csa->work3;
int j;
#ifdef GLP_DEBUG
int k;
#endif
/* compute simplex multipliers */
eval_pi(csa, pi);
/* compute and store reduced costs */
for (j = 1; j <= n; j++)
{
#ifdef GLP_DEBUG
k = head[m+j]; /* x[k] = xN[j] */
xassert(1 <= k && k <= m+n);
#endif
cbar[j] = eval_cost(csa, pi, j);
}
return;
}
#endif
/***********************************************************************
* reset_refsp - reset the reference space
*
* This routine resets (redefines) the reference space used in the
* projected steepest edge pricing algorithm. */
static void reset_refsp(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
int *head = csa->head;
char *refsp = csa->refsp;
double *gamma = csa->gamma;
int i, k;
xassert(csa->refct == 0);
csa->refct = 1000;
memset(&refsp[1], 0, (m+n) * sizeof(char));
for (i = 1; i <= m; i++)
{ k = head[i]; /* x[k] = xB[i] */
refsp[k] = 1;
gamma[i] = 1.0;
}
return;
}
/***********************************************************************
* eval_gamma - compute steepest edge coefficients
*
* This routine computes the vector of steepest edge coefficients for
* all basic variables (except free ones) using its direct definition:
*
* gamma[i] = eta[i] + sum alfa[i,j]^2, i = 1,...,m,
* j in C
*
* where eta[i] = 1 means that xB[i] is in the current reference space,
* and 0 otherwise; C is a set of non-basic non-fixed variables xN[j],
* which are in the current reference space; alfa[i,j] are elements of
* the current simplex table.
*
* NOTE: The routine is intended only for debugginig purposes. */
static void eval_gamma(struct csa *csa, double gamma[])
{ int m = csa->m;
int n = csa->n;
char *type = csa->type;
int *head = csa->head;
char *refsp = csa->refsp;
double *alfa = csa->work3;
double *h = csa->work3;
int i, j, k;
/* gamma[i] := eta[i] (or 1, if xB[i] is free) */
for (i = 1; i <= m; i++)
{ k = head[i]; /* x[k] = xB[i] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (type[k] == GLP_FR)
gamma[i] = 1.0;
else
gamma[i] = (refsp[k] ? 1.0 : 0.0);
}
/* compute columns of the current simplex table */
for (j = 1; j <= n; j++)
{ k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
/* skip column, if xN[j] is not in C */
if (!refsp[k]) continue;
#ifdef GLP_DEBUG
/* set C must not contain fixed variables */
xassert(type[k] != GLP_FX);
#endif
/* construct the right-hand side vector h = - N[j] */
for (i = 1; i <= m; i++)
h[i] = 0.0;
if (k <= m)
{ /* N[j] is k-th column of submatrix I */
h[k] = -1.0;
}
else
{ /* N[j] is (k-m)-th column of submatrix (-A) */
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int beg, end, ptr;
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
h[A_ind[ptr]] = A_val[ptr];
}
/* solve system B * alfa = h */
xassert(csa->valid);
bfd_ftran(csa->bfd, alfa);
/* gamma[i] := gamma[i] + alfa[i,j]^2 */
for (i = 1; i <= m; i++)
{ k = head[i]; /* x[k] = xB[i] */
if (type[k] != GLP_FR)
gamma[i] += alfa[i] * alfa[i];
}
}
return;
}
/***********************************************************************
* chuzr - choose basic variable (row of the simplex table)
*
* This routine chooses basic variable xB[p] having largest weighted
* bound violation:
*
* |r[p]| / sqrt(gamma[p]) = max |r[i]| / sqrt(gamma[i]),
* i in I
*
* / lB[i] - beta[i], if beta[i] < lB[i]
* |
* r[i] = < 0, if lB[i] <= beta[i] <= uB[i]
* |
* \ uB[i] - beta[i], if beta[i] > uB[i]
*
* where beta[i] is primal value of xB[i] in the current basis, lB[i]
* and uB[i] are lower and upper bounds of xB[i], I is a subset of
* eligible basic variables, which significantly violates their bounds,
* gamma[i] is the steepest edge coefficient.
*
* If |r[i]| is less than a specified tolerance, xB[i] is not included
* in I and therefore ignored.
*
* If I is empty and no variable has been chosen, p is set to 0. */
static void chuzr(struct csa *csa, double tol_bnd)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
char *type = csa->type;
double *lb = csa->lb;
double *ub = csa->ub;
int *head = csa->head;
double *bbar = csa->bbar;
double *gamma = csa->gamma;
int i, k, p;
double delta, best, eps, ri, temp;
/* nothing is chosen so far */
p = 0, delta = 0.0, best = 0.0;
/* look through the list of basic variables */
for (i = 1; i <= m; i++)
{ k = head[i]; /* x[k] = xB[i] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
/* determine bound violation ri[i] */
ri = 0.0;
if (type[k] == GLP_LO || type[k] == GLP_DB ||
type[k] == GLP_FX)
{ /* xB[i] has lower bound */
eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
if (bbar[i] < lb[k] - eps)
{ /* and significantly violates it */
ri = lb[k] - bbar[i];
}
}
if (type[k] == GLP_UP || type[k] == GLP_DB ||
type[k] == GLP_FX)
{ /* xB[i] has upper bound */
eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
if (bbar[i] > ub[k] + eps)
{ /* and significantly violates it */
ri = ub[k] - bbar[i];
}
}
/* if xB[i] is not eligible, skip it */
if (ri == 0.0) continue;
/* xB[i] is eligible basic variable; choose one with largest
weighted bound violation */
#ifdef GLP_DEBUG
xassert(gamma[i] >= 0.0);
#endif
temp = gamma[i];
if (temp < DBL_EPSILON) temp = DBL_EPSILON;
temp = (ri * ri) / temp;
if (best < temp)
p = i, delta = ri, best = temp;
}
/* store the index of basic variable xB[p] chosen and its change
in the adjacent basis */
csa->p = p;
csa->delta = delta;
return;
}
#if 1 /* copied from primal */
/***********************************************************************
* eval_rho - compute pivot row of the inverse
*
* This routine computes the pivot (p-th) row of the inverse inv(B),
* which corresponds to basic variable xB[p] chosen:
*
* rho = inv(B') * e[p],
*
* where B' is a matrix transposed to the current basis matrix, e[p]
* is unity vector. */
static void eval_rho(struct csa *csa, double rho[])
{ int m = csa->m;
int p = csa->p;
double *e = rho;
int i;
#ifdef GLP_DEBUG
xassert(1 <= p && p <= m);
#endif
/* construct the right-hand side vector e[p] */
for (i = 1; i <= m; i++)
e[i] = 0.0;
e[p] = 1.0;
/* solve system B'* rho = e[p] */
xassert(csa->valid);
bfd_btran(csa->bfd, rho);
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* refine_rho - refine pivot row of the inverse
*
* This routine refines the pivot row of the inverse inv(B) assuming
* that it was previously computed by the routine eval_rho. */
static void refine_rho(struct csa *csa, double rho[])
{ int m = csa->m;
int p = csa->p;
double *e = csa->work3;
int i;
#ifdef GLP_DEBUG
xassert(1 <= p && p <= m);
#endif
/* construct the right-hand side vector e[p] */
for (i = 1; i <= m; i++)
e[i] = 0.0;
e[p] = 1.0;
/* refine solution of B'* rho = e[p] */
refine_btran(csa, e, rho);
return;
}
#endif
#if 1 /* 06/IV-2009 */
/***********************************************************************
* eval_trow - compute pivot row of the simplex table
*
* This routine computes the pivot row of the simplex table, which
* corresponds to basic variable xB[p] chosen.
*
* The pivot row is the following vector:
*
* trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho,
*
* where rho is the pivot row of the inverse inv(B) previously computed
* by the routine eval_rho.
*
* Note that elements of the pivot row corresponding to fixed non-basic
* variables are not computed.
*
* NOTES
*
* Computing pivot row of the simplex table is one of the most time
* consuming operations, and for some instances it may take more than
* 50% of the total solution time.
*
* In the current implementation there are two routines to compute the
* pivot row. The routine eval_trow1 computes elements of the pivot row
* as inner products of columns of the matrix N and the vector rho; it
* is used when the vector rho is relatively dense. The routine
* eval_trow2 computes the pivot row as a linear combination of rows of
* the matrix N; it is used when the vector rho is relatively sparse. */
static void eval_trow1(struct csa *csa, double rho[])
{ int m = csa->m;
int n = csa->n;
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int *head = csa->head;
char *stat = csa->stat;
int *trow_ind = csa->trow_ind;
double *trow_vec = csa->trow_vec;
int j, k, beg, end, ptr, nnz;
double temp;
/* compute the pivot row as inner products of columns of the
matrix N and vector rho: trow[j] = - rho * N[j] */
nnz = 0;
for (j = 1; j <= n; j++)
{ if (stat[j] == GLP_NS)
{ /* xN[j] is fixed */
trow_vec[j] = 0.0;
continue;
}
k = head[m+j]; /* x[k] = xN[j] */
if (k <= m)
{ /* N[j] is k-th column of submatrix I */
temp = - rho[k];
}
else
{ /* N[j] is (k-m)-th column of submatrix (-A) */
beg = A_ptr[k-m], end = A_ptr[k-m+1];
temp = 0.0;
for (ptr = beg; ptr < end; ptr++)
temp += rho[A_ind[ptr]] * A_val[ptr];
}
if (temp != 0.0)
trow_ind[++nnz] = j;
trow_vec[j] = temp;
}
csa->trow_nnz = nnz;
return;
}
static void eval_trow2(struct csa *csa, double rho[])
{ int m = csa->m;
int n = csa->n;
int *AT_ptr = csa->AT_ptr;
int *AT_ind = csa->AT_ind;
double *AT_val = csa->AT_val;
int *bind = csa->bind;
char *stat = csa->stat;
int *trow_ind = csa->trow_ind;
double *trow_vec = csa->trow_vec;
int i, j, beg, end, ptr, nnz;
double temp;
/* clear the pivot row */
for (j = 1; j <= n; j++)
trow_vec[j] = 0.0;
/* compute the pivot row as a linear combination of rows of the
matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */
for (i = 1; i <= m; i++)
{ temp = rho[i];
if (temp == 0.0) continue;
/* trow := trow - rho[i] * N'[i] */
j = bind[i] - m; /* x[i] = xN[j] */
if (j >= 1 && stat[j] != GLP_NS)
trow_vec[j] -= temp;
beg = AT_ptr[i], end = AT_ptr[i+1];
for (ptr = beg; ptr < end; ptr++)
{ j = bind[m + AT_ind[ptr]] - m; /* x[k] = xN[j] */
if (j >= 1 && stat[j] != GLP_NS)
trow_vec[j] += temp * AT_val[ptr];
}
}
/* construct sparse pattern of the pivot row */
nnz = 0;
for (j = 1; j <= n; j++)
{ if (trow_vec[j] != 0.0)
trow_ind[++nnz] = j;
}
csa->trow_nnz = nnz;
return;
}
static void eval_trow(struct csa *csa, double rho[])
{ int m = csa->m;
int i, nnz;
double dens;
/* determine the density of the vector rho */
nnz = 0;
for (i = 1; i <= m; i++)
if (rho[i] != 0.0) nnz++;
dens = (double)nnz / (double)m;
if (dens >= 0.20)
{ /* rho is relatively dense */
eval_trow1(csa, rho);
}
else
{ /* rho is relatively sparse */
eval_trow2(csa, rho);
}
return;
}
#endif
/***********************************************************************
* sort_trow - sort pivot row of the simplex table
*
* This routine reorders the list of non-zero elements of the pivot
* row to put significant elements, whose magnitude is not less than
* a specified tolerance, in front of the list, and stores the number
* of significant elements in trow_num. */
static void sort_trow(struct csa *csa, double tol_piv)
{
#ifdef GLP_DEBUG
int n = csa->n;
char *stat = csa->stat;
#endif
int nnz = csa->trow_nnz;
int *trow_ind = csa->trow_ind;
double *trow_vec = csa->trow_vec;
int j, num, pos;
double big, eps, temp;
/* compute infinity (maximum) norm of the row */
big = 0.0;
for (pos = 1; pos <= nnz; pos++)
{
#ifdef GLP_DEBUG
j = trow_ind[pos];
xassert(1 <= j && j <= n);
xassert(stat[j] != GLP_NS);
#endif
temp = fabs(trow_vec[trow_ind[pos]]);
if (big < temp) big = temp;
}
csa->trow_max = big;
/* determine absolute pivot tolerance */
eps = tol_piv * (1.0 + 0.01 * big);
/* move significant row components to the front of the list */
for (num = 0; num < nnz; )
{ j = trow_ind[nnz];
if (fabs(trow_vec[j]) < eps)
nnz--;
else
{ num++;
trow_ind[nnz] = trow_ind[num];
trow_ind[num] = j;
}
}
csa->trow_num = num;
return;
}
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
static int ls_func(const void *p1_, const void *p2_)
{ const struct bkpt *p1 = p1_, *p2 = p2_;
if (p1->t < p2->t) return -1;
if (p1->t > p2->t) return +1;
return 0;
}
static int ls_func1(const void *p1_, const void *p2_)
{ const struct bkpt *p1 = p1_, *p2 = p2_;
if (p1->dz < p2->dz) return -1;
if (p1->dz > p2->dz) return +1;
return 0;
}
static void long_step(struct csa *csa)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
char *type = csa->type;
double *lb = csa->lb;
double *ub = csa->ub;
int *head = csa->head;
char *stat = csa->stat;
double *cbar = csa->cbar;
double delta = csa->delta;
int *trow_ind = csa->trow_ind;
double *trow_vec = csa->trow_vec;
int trow_num = csa->trow_num;
struct bkpt *bkpt = csa->bkpt;
int j, k, kk, nbps, pos;
double alfa, s, slope, dzmax;
/* delta > 0 means that xB[p] violates its lower bound, so to
increase the dual objective lambdaB[p] must increase;
delta < 0 means that xB[p] violates its upper bound, so to
increase the dual objective lambdaB[p] must decrease */
/* s := sign(delta) */
s = (delta > 0.0 ? +1.0 : -1.0);
/* determine breakpoints of the dual objective */
nbps = 0;
for (pos = 1; pos <= trow_num; pos++)
{ j = trow_ind[pos];
#ifdef GLP_DEBUG
xassert(1 <= j && j <= n);
xassert(stat[j] != GLP_NS);
#endif
/* if there is free non-basic variable, switch to the standard
ratio test */
if (stat[j] == GLP_NF)
{ nbps = 0;
goto done;
}
/* lambdaN[j] = ... - alfa * t - ..., where t = s * lambdaB[i]
is the dual ray parameter, t >= 0 */
alfa = s * trow_vec[j];
#ifdef GLP_DEBUG
xassert(alfa != 0.0);
xassert(stat[j] == GLP_NL || stat[j] == GLP_NU);
#endif
if (alfa > 0.0 && stat[j] == GLP_NL ||
alfa < 0.0 && stat[j] == GLP_NU)
{ /* either lambdaN[j] >= 0 (if stat = GLP_NL) and decreases
or lambdaN[j] <= 0 (if stat = GLP_NU) and increases; in
both cases we have a breakpoint */
nbps++;
#ifdef GLP_DEBUG
xassert(nbps <= n);
#endif
bkpt[nbps].j = j;
bkpt[nbps].t = cbar[j] / alfa;
/*
if (stat[j] == GLP_NL && cbar[j] < 0.0 ||
stat[j] == GLP_NU && cbar[j] > 0.0)
xprintf("%d %g\n", stat[j], cbar[j]);
*/
/* if t is negative, replace it by exact zero (see comments
in the routine chuzc) */
if (bkpt[nbps].t < 0.0) bkpt[nbps].t = 0.0;
}
}
/* if there are less than two breakpoints, switch to the standard
ratio test */
if (nbps < 2)
{ nbps = 0;
goto done;
}
/* sort breakpoints by ascending the dual ray parameter, t */
qsort(&bkpt[1], nbps, sizeof(struct bkpt), ls_func);
/* determine last breakpoint, at which the dual objective still
greater than at t = 0 */
dzmax = 0.0;
slope = fabs(delta); /* initial slope */
for (kk = 1; kk <= nbps; kk++)
{ if (kk == 1)
bkpt[kk].dz =
0.0 + slope * (bkpt[kk].t - 0.0);
else
bkpt[kk].dz =
bkpt[kk-1].dz + slope * (bkpt[kk].t - bkpt[kk-1].t);
if (dzmax < bkpt[kk].dz)
dzmax = bkpt[kk].dz;
else if (bkpt[kk].dz < 0.05 * (1.0 + dzmax))
{ nbps = kk - 1;
break;
}
j = bkpt[kk].j;
k = head[m+j]; /* x[k] = xN[j] */
if (type[k] == GLP_DB)
slope -= fabs(trow_vec[j]) * (ub[k] - lb[k]);
else
{ nbps = kk;
break;
}
}
/* if there are less than two breakpoints, switch to the standard
ratio test */
if (nbps < 2)
{ nbps = 0;
goto done;
}
/* sort breakpoints by ascending the dual change, dz */
qsort(&bkpt[1], nbps, sizeof(struct bkpt), ls_func1);
/*
for (kk = 1; kk <= nbps; kk++)
xprintf("%d; t = %g; dz = %g\n", kk, bkpt[kk].t, bkpt[kk].dz);
*/
done: csa->nbps = nbps;
return;
}
#endif
/***********************************************************************
* chuzc - choose non-basic variable (column of the simplex table)
*
* This routine chooses non-basic variable xN[q], which being entered
* in the basis keeps dual feasibility of the basic solution.
*
* The parameter rtol is a relative tolerance used to relax zero bounds
* of reduced costs of non-basic variables. If rtol = 0, the routine
* implements the standard ratio test. Otherwise, if rtol > 0, the
* routine implements Harris' two-pass ratio test. In the latter case
* rtol should be about three times less than a tolerance used to check
* dual feasibility. */
static void chuzc(struct csa *csa, double rtol)
{
#ifdef GLP_DEBUG
int m = csa->m;
int n = csa->n;
#endif
char *stat = csa->stat;
double *cbar = csa->cbar;
#ifdef GLP_DEBUG
int p = csa->p;
#endif
double delta = csa->delta;
int *trow_ind = csa->trow_ind;
double *trow_vec = csa->trow_vec;
int trow_num = csa->trow_num;
int j, pos, q;
double alfa, big, s, t, teta, tmax;
#ifdef GLP_DEBUG
xassert(1 <= p && p <= m);
#endif
/* delta > 0 means that xB[p] violates its lower bound and goes
to it in the adjacent basis, so lambdaB[p] is increasing from
its lower zero bound;
delta < 0 means that xB[p] violates its upper bound and goes
to it in the adjacent basis, so lambdaB[p] is decreasing from
its upper zero bound */
#ifdef GLP_DEBUG
xassert(delta != 0.0);
#endif
/* s := sign(delta) */
s = (delta > 0.0 ? +1.0 : -1.0);
/*** FIRST PASS ***/
/* nothing is chosen so far */
q = 0, teta = DBL_MAX, big = 0.0;
/* walk through significant elements of the pivot row */
for (pos = 1; pos <= trow_num; pos++)
{ j = trow_ind[pos];
#ifdef GLP_DEBUG
xassert(1 <= j && j <= n);
#endif
alfa = s * trow_vec[j];
#ifdef GLP_DEBUG
xassert(alfa != 0.0);
#endif
/* lambdaN[j] = ... - alfa * lambdaB[p] - ..., and due to s we
need to consider only increasing lambdaB[p] */
if (alfa > 0.0)
{ /* lambdaN[j] is decreasing */
if (stat[j] == GLP_NL || stat[j] == GLP_NF)
{ /* lambdaN[j] has zero lower bound */
t = (cbar[j] + rtol) / alfa;
}
else
{ /* lambdaN[j] has no lower bound */
continue;
}
}
else
{ /* lambdaN[j] is increasing */
if (stat[j] == GLP_NU || stat[j] == GLP_NF)
{ /* lambdaN[j] has zero upper bound */
t = (cbar[j] - rtol) / alfa;
}
else
{ /* lambdaN[j] has no upper bound */
continue;
}
}
/* t is a change of lambdaB[p], on which lambdaN[j] reaches
its zero bound (possibly relaxed); since the basic solution
is assumed to be dual feasible, t has to be non-negative by
definition; however, it may happen that lambdaN[j] slightly
(i.e. within a tolerance) violates its zero bound, that
leads to negative t; in the latter case, if xN[j] is chosen,
negative t means that lambdaB[p] changes in wrong direction
that may cause wrong results on updating reduced costs;
thus, if t is negative, we should replace it by exact zero
assuming that lambdaN[j] is exactly on its zero bound, and
violation appears due to round-off errors */
if (t < 0.0) t = 0.0;
/* apply minimal ratio test */
if (teta > t || teta == t && big < fabs(alfa))
q = j, teta = t, big = fabs(alfa);
}
/* the second pass is skipped in the following cases: */
/* if the standard ratio test is used */
if (rtol == 0.0) goto done;
/* if no non-basic variable has been chosen on the first pass */
if (q == 0) goto done;
/* if lambdaN[q] prevents lambdaB[p] from any change */
if (teta == 0.0) goto done;
/*** SECOND PASS ***/
/* here tmax is a maximal change of lambdaB[p], on which the
solution remains dual feasible within a tolerance */
#if 0
tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;
#else
tmax = teta;
#endif
/* nothing is chosen so far */
q = 0, teta = DBL_MAX, big = 0.0;
/* walk through significant elements of the pivot row */
for (pos = 1; pos <= trow_num; pos++)
{ j = trow_ind[pos];
#ifdef GLP_DEBUG
xassert(1 <= j && j <= n);
#endif
alfa = s * trow_vec[j];
#ifdef GLP_DEBUG
xassert(alfa != 0.0);
#endif
/* lambdaN[j] = ... - alfa * lambdaB[p] - ..., and due to s we
need to consider only increasing lambdaB[p] */
if (alfa > 0.0)
{ /* lambdaN[j] is decreasing */
if (stat[j] == GLP_NL || stat[j] == GLP_NF)
{ /* lambdaN[j] has zero lower bound */
t = cbar[j] / alfa;
}
else
{ /* lambdaN[j] has no lower bound */
continue;
}
}
else
{ /* lambdaN[j] is increasing */
if (stat[j] == GLP_NU || stat[j] == GLP_NF)
{ /* lambdaN[j] has zero upper bound */
t = cbar[j] / alfa;
}
else
{ /* lambdaN[j] has no upper bound */
continue;
}
}
/* (see comments for the first pass) */
if (t < 0.0) t = 0.0;
/* t is a change of lambdaB[p], on which lambdaN[j] reaches
its zero (lower or upper) bound; if t <= tmax, all reduced
costs can violate their zero bounds only within relaxation
tolerance rtol, so we can choose non-basic variable having
largest influence coefficient to avoid possible numerical
instability */
if (t <= tmax && big < fabs(alfa))
q = j, teta = t, big = fabs(alfa);
}
/* something must be chosen on the second pass */
xassert(q != 0);
done: /* store the index of non-basic variable xN[q] chosen */
csa->q = q;
/* store reduced cost of xN[q] in the adjacent basis */
csa->new_dq = s * teta;
return;
}
#if 1 /* copied from primal */
/***********************************************************************
* eval_tcol - compute pivot column of the simplex table
*
* This routine computes the pivot column of the simplex table, which
* corresponds to non-basic variable xN[q] chosen.
*
* The pivot column is the following vector:
*
* tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
*
* where B is the current basis matrix, N[q] is a column of the matrix
* (I|-A) corresponding to variable xN[q]. */
static void eval_tcol(struct csa *csa)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
int *head = csa->head;
int q = csa->q;
int *tcol_ind = csa->tcol_ind;
double *tcol_vec = csa->tcol_vec;
double *h = csa->tcol_vec;
int i, k, nnz;
#ifdef GLP_DEBUG
xassert(1 <= q && q <= n);
#endif
k = head[m+q]; /* x[k] = xN[q] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
/* construct the right-hand side vector h = - N[q] */
for (i = 1; i <= m; i++)
h[i] = 0.0;
if (k <= m)
{ /* N[q] is k-th column of submatrix I */
h[k] = -1.0;
}
else
{ /* N[q] is (k-m)-th column of submatrix (-A) */
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int beg, end, ptr;
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
h[A_ind[ptr]] = A_val[ptr];
}
/* solve system B * tcol = h */
xassert(csa->valid);
bfd_ftran(csa->bfd, tcol_vec);
/* construct sparse pattern of the pivot column */
nnz = 0;
for (i = 1; i <= m; i++)
{ if (tcol_vec[i] != 0.0)
tcol_ind[++nnz] = i;
}
csa->tcol_nnz = nnz;
return;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* refine_tcol - refine pivot column of the simplex table
*
* This routine refines the pivot column of the simplex table assuming
* that it was previously computed by the routine eval_tcol. */
static void refine_tcol(struct csa *csa)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
int *head = csa->head;
int q = csa->q;
int *tcol_ind = csa->tcol_ind;
double *tcol_vec = csa->tcol_vec;
double *h = csa->work3;
int i, k, nnz;
#ifdef GLP_DEBUG
xassert(1 <= q && q <= n);
#endif
k = head[m+q]; /* x[k] = xN[q] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
/* construct the right-hand side vector h = - N[q] */
for (i = 1; i <= m; i++)
h[i] = 0.0;
if (k <= m)
{ /* N[q] is k-th column of submatrix I */
h[k] = -1.0;
}
else
{ /* N[q] is (k-m)-th column of submatrix (-A) */
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int beg, end, ptr;
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
h[A_ind[ptr]] = A_val[ptr];
}
/* refine solution of B * tcol = h */
refine_ftran(csa, h, tcol_vec);
/* construct sparse pattern of the pivot column */
nnz = 0;
for (i = 1; i <= m; i++)
{ if (tcol_vec[i] != 0.0)
tcol_ind[++nnz] = i;
}
csa->tcol_nnz = nnz;
return;
}
#endif
/***********************************************************************
* update_cbar - update reduced costs of non-basic variables
*
* This routine updates reduced costs of all (except fixed) non-basic
* variables for the adjacent basis. */
static void update_cbar(struct csa *csa)
{
#ifdef GLP_DEBUG
int n = csa->n;
#endif
double *cbar = csa->cbar;
int trow_nnz = csa->trow_nnz;
int *trow_ind = csa->trow_ind;
double *trow_vec = csa->trow_vec;
int q = csa->q;
double new_dq = csa->new_dq;
int j, pos;
#ifdef GLP_DEBUG
xassert(1 <= q && q <= n);
#endif
/* set new reduced cost of xN[q] */
cbar[q] = new_dq;
/* update reduced costs of other non-basic variables */
if (new_dq == 0.0) goto done;
for (pos = 1; pos <= trow_nnz; pos++)
{ j = trow_ind[pos];
#ifdef GLP_DEBUG
xassert(1 <= j && j <= n);
#endif
if (j != q)
cbar[j] -= trow_vec[j] * new_dq;
}
done: return;
}
/***********************************************************************
* update_bbar - update values of basic variables
*
* This routine updates values of all basic variables for the adjacent
* basis. */
static void update_bbar(struct csa *csa)
{
#ifdef GLP_DEBUG
int m = csa->m;
int n = csa->n;
#endif
double *bbar = csa->bbar;
int p = csa->p;
double delta = csa->delta;
int q = csa->q;
int tcol_nnz = csa->tcol_nnz;
int *tcol_ind = csa->tcol_ind;
double *tcol_vec = csa->tcol_vec;
int i, pos;
double teta;
#ifdef GLP_DEBUG
xassert(1 <= p && p <= m);
xassert(1 <= q && q <= n);
#endif
/* determine the change of xN[q] in the adjacent basis */
#ifdef GLP_DEBUG
xassert(tcol_vec[p] != 0.0);
#endif
teta = delta / tcol_vec[p];
/* set new primal value of xN[q] */
bbar[p] = get_xN(csa, q) + teta;
/* update primal values of other basic variables */
if (teta == 0.0) goto done;
for (pos = 1; pos <= tcol_nnz; pos++)
{ i = tcol_ind[pos];
#ifdef GLP_DEBUG
xassert(1 <= i && i <= m);
#endif
if (i != p)
bbar[i] += tcol_vec[i] * teta;
}
done: return;
}
/***********************************************************************
* update_gamma - update steepest edge coefficients
*
* This routine updates steepest-edge coefficients for the adjacent
* basis. */
static void update_gamma(struct csa *csa)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
char *type = csa->type;
int *head = csa->head;
char *refsp = csa->refsp;
double *gamma = csa->gamma;
int p = csa->p;
int trow_nnz = csa->trow_nnz;
int *trow_ind = csa->trow_ind;
double *trow_vec = csa->trow_vec;
int q = csa->q;
int tcol_nnz = csa->tcol_nnz;
int *tcol_ind = csa->tcol_ind;
double *tcol_vec = csa->tcol_vec;
double *u = csa->work3;
int i, j, k,pos;
double gamma_p, eta_p, pivot, t, t1, t2;
#ifdef GLP_DEBUG
xassert(1 <= p && p <= m);
xassert(1 <= q && q <= n);
#endif
/* the basis changes, so decrease the count */
xassert(csa->refct > 0);
csa->refct--;
/* recompute gamma[p] for the current basis more accurately and
compute auxiliary vector u */
#ifdef GLP_DEBUG
xassert(type[head[p]] != GLP_FR);
#endif
gamma_p = eta_p = (refsp[head[p]] ? 1.0 : 0.0);
for (i = 1; i <= m; i++) u[i] = 0.0;
for (pos = 1; pos <= trow_nnz; pos++)
{ j = trow_ind[pos];
#ifdef GLP_DEBUG
xassert(1 <= j && j <= n);
#endif
k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
xassert(type[k] != GLP_FX);
#endif
if (!refsp[k]) continue;
t = trow_vec[j];
gamma_p += t * t;
/* u := u + N[j] * delta[j] * trow[j] */
if (k <= m)
{ /* N[k] = k-j stolbec submatrix I */
u[k] += t;
}
else
{ /* N[k] = k-m-k stolbec (-A) */
int *A_ptr = csa->A_ptr;
int *A_ind = csa->A_ind;
double *A_val = csa->A_val;
int beg, end, ptr;
beg = A_ptr[k-m];
end = A_ptr[k-m+1];
for (ptr = beg; ptr < end; ptr++)
u[A_ind[ptr]] -= t * A_val[ptr];
}
}
xassert(csa->valid);
bfd_ftran(csa->bfd, u);
/* update gamma[i] for other basic variables (except xB[p] and
free variables) */
pivot = tcol_vec[p];
#ifdef GLP_DEBUG
xassert(pivot != 0.0);
#endif
for (pos = 1; pos <= tcol_nnz; pos++)
{ i = tcol_ind[pos];
#ifdef GLP_DEBUG
xassert(1 <= i && i <= m);
#endif
k = head[i];
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
/* skip xB[p] */
if (i == p) continue;
/* skip free basic variable */
if (type[head[i]] == GLP_FR)
{
#ifdef GLP_DEBUG
xassert(gamma[i] == 1.0);
#endif
continue;
}
/* compute gamma[i] for the adjacent basis */
t = tcol_vec[i] / pivot;
t1 = gamma[i] + t * t * gamma_p + 2.0 * t * u[i];
t2 = (refsp[k] ? 1.0 : 0.0) + eta_p * t * t;
gamma[i] = (t1 >= t2 ? t1 : t2);
/* (though gamma[i] can be exact zero, because the reference
space does not include non-basic fixed variables) */
if (gamma[i] < DBL_EPSILON) gamma[i] = DBL_EPSILON;
}
/* compute gamma[p] for the adjacent basis */
if (type[head[m+q]] == GLP_FR)
gamma[p] = 1.0;
else
{ gamma[p] = gamma_p / (pivot * pivot);
if (gamma[p] < DBL_EPSILON) gamma[p] = DBL_EPSILON;
}
/* if xB[p], which becomes xN[q] in the adjacent basis, is fixed
and belongs to the reference space, remove it from there, and
change all gamma's appropriately */
k = head[p];
if (type[k] == GLP_FX && refsp[k])
{ refsp[k] = 0;
for (pos = 1; pos <= tcol_nnz; pos++)
{ i = tcol_ind[pos];
if (i == p)
{ if (type[head[m+q]] == GLP_FR) continue;
t = 1.0 / tcol_vec[p];
}
else
{ if (type[head[i]] == GLP_FR) continue;
t = tcol_vec[i] / tcol_vec[p];
}
gamma[i] -= t * t;
if (gamma[i] < DBL_EPSILON) gamma[i] = DBL_EPSILON;
}
}
return;
}
#if 1 /* copied from primal */
/***********************************************************************
* err_in_bbar - compute maximal relative error in primal solution
*
* This routine returns maximal relative error:
*
* max |beta[i] - bbar[i]| / (1 + |beta[i]|),
*
* where beta and bbar are, respectively, directly computed and the
* current (updated) values of basic variables.
*
* NOTE: The routine is intended only for debugginig purposes. */
static double err_in_bbar(struct csa *csa)
{ int m = csa->m;
double *bbar = csa->bbar;
int i;
double e, emax, *beta;
beta = xcalloc(1+m, sizeof(double));
eval_beta(csa, beta);
emax = 0.0;
for (i = 1; i <= m; i++)
{ e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i]));
if (emax < e) emax = e;
}
xfree(beta);
return emax;
}
#endif
#if 1 /* copied from primal */
/***********************************************************************
* err_in_cbar - compute maximal relative error in dual solution
*
* This routine returns maximal relative error:
*
* max |cost[j] - cbar[j]| / (1 + |cost[j]|),
*
* where cost and cbar are, respectively, directly computed and the
* current (updated) reduced costs of non-basic non-fixed variables.
*
* NOTE: The routine is intended only for debugginig purposes. */
static double err_in_cbar(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
char *stat = csa->stat;
double *cbar = csa->cbar;
int j;
double e, emax, cost, *pi;
pi = xcalloc(1+m, sizeof(double));
eval_pi(csa, pi);
emax = 0.0;
for (j = 1; j <= n; j++)
{ if (stat[j] == GLP_NS) continue;
cost = eval_cost(csa, pi, j);
e = fabs(cost - cbar[j]) / (1.0 + fabs(cost));
if (emax < e) emax = e;
}
xfree(pi);
return emax;
}
#endif
/***********************************************************************
* err_in_gamma - compute maximal relative error in steepest edge cff.
*
* This routine returns maximal relative error:
*
* max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]),
*
* where gamma'[j] and gamma[j] are, respectively, directly computed
* and the current (updated) steepest edge coefficients for non-basic
* non-fixed variable x[j].
*
* NOTE: The routine is intended only for debugginig purposes. */
static double err_in_gamma(struct csa *csa)
{ int m = csa->m;
char *type = csa->type;
int *head = csa->head;
double *gamma = csa->gamma;
double *exact = csa->work4;
int i;
double e, emax, temp;
eval_gamma(csa, exact);
emax = 0.0;
for (i = 1; i <= m; i++)
{ if (type[head[i]] == GLP_FR)
{ xassert(gamma[i] == 1.0);
xassert(exact[i] == 1.0);
continue;
}
temp = exact[i];
e = fabs(temp - gamma[i]) / (1.0 + fabs(temp));
if (emax < e) emax = e;
}
return emax;
}
/***********************************************************************
* change_basis - change basis header
*
* This routine changes the basis header to make it corresponding to
* the adjacent basis. */
static void change_basis(struct csa *csa)
{ int m = csa->m;
#ifdef GLP_DEBUG
int n = csa->n;
#endif
char *type = csa->type;
int *head = csa->head;
#if 1 /* 06/IV-2009 */
int *bind = csa->bind;
#endif
char *stat = csa->stat;
int p = csa->p;
double delta = csa->delta;
int q = csa->q;
int k;
/* xB[p] leaves the basis, xN[q] enters the basis */
#ifdef GLP_DEBUG
xassert(1 <= p && p <= m);
xassert(1 <= q && q <= n);
#endif
/* xB[p] <-> xN[q] */
k = head[p], head[p] = head[m+q], head[m+q] = k;
#if 1 /* 06/IV-2009 */
bind[head[p]] = p, bind[head[m+q]] = m + q;
#endif
if (type[k] == GLP_FX)
stat[q] = GLP_NS;
else if (delta > 0.0)
{
#ifdef GLP_DEBUG
xassert(type[k] == GLP_LO || type[k] == GLP_DB);
#endif
stat[q] = GLP_NL;
}
else /* delta < 0.0 */
{
#ifdef GLP_DEBUG
xassert(type[k] == GLP_UP || type[k] == GLP_DB);
#endif
stat[q] = GLP_NU;
}
return;
}
/***********************************************************************
* check_feas - check dual feasibility of basic solution
*
* If the current basic solution is dual feasible within a tolerance,
* this routine returns zero, otherwise it returns non-zero. */
static int check_feas(struct csa *csa, double tol_dj)
{ int m = csa->m;
int n = csa->n;
char *orig_type = csa->orig_type;
int *head = csa->head;
double *cbar = csa->cbar;
int j, k;
for (j = 1; j <= n; j++)
{ k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (cbar[j] < - tol_dj)
if (orig_type[k] == GLP_LO || orig_type[k] == GLP_FR)
return 1;
if (cbar[j] > + tol_dj)
if (orig_type[k] == GLP_UP || orig_type[k] == GLP_FR)
return 1;
}
return 0;
}
/***********************************************************************
* set_aux_bnds - assign auxiliary bounds to variables
*
* This routine assigns auxiliary bounds to variables to construct an
* LP problem solved on phase I. */
static void set_aux_bnds(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
char *type = csa->type;
double *lb = csa->lb;
double *ub = csa->ub;
char *orig_type = csa->orig_type;
int *head = csa->head;
char *stat = csa->stat;
double *cbar = csa->cbar;
int j, k;
for (k = 1; k <= m+n; k++)
{ switch (orig_type[k])
{ case GLP_FR:
#if 0
type[k] = GLP_DB, lb[k] = -1.0, ub[k] = +1.0;
#else
/* to force free variables to enter the basis */
type[k] = GLP_DB, lb[k] = -1e3, ub[k] = +1e3;
#endif
break;
case GLP_LO:
type[k] = GLP_DB, lb[k] = 0.0, ub[k] = +1.0;
break;
case GLP_UP:
type[k] = GLP_DB, lb[k] = -1.0, ub[k] = 0.0;
break;
case GLP_DB:
case GLP_FX:
type[k] = GLP_FX, lb[k] = ub[k] = 0.0;
break;
default:
xassert(orig_type != orig_type);
}
}
for (j = 1; j <= n; j++)
{ k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (type[k] == GLP_FX)
stat[j] = GLP_NS;
else if (cbar[j] >= 0.0)
stat[j] = GLP_NL;
else
stat[j] = GLP_NU;
}
return;
}
/***********************************************************************
* set_orig_bnds - restore original bounds of variables
*
* This routine restores original types and bounds of variables and
* determines statuses of non-basic variables assuming that the current
* basis is dual feasible. */
static void set_orig_bnds(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
char *type = csa->type;
double *lb = csa->lb;
double *ub = csa->ub;
char *orig_type = csa->orig_type;
double *orig_lb = csa->orig_lb;
double *orig_ub = csa->orig_ub;
int *head = csa->head;
char *stat = csa->stat;
double *cbar = csa->cbar;
int j, k;
memcpy(&type[1], &orig_type[1], (m+n) * sizeof(char));
memcpy(&lb[1], &orig_lb[1], (m+n) * sizeof(double));
memcpy(&ub[1], &orig_ub[1], (m+n) * sizeof(double));
for (j = 1; j <= n; j++)
{ k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
switch (type[k])
{ case GLP_FR:
stat[j] = GLP_NF;
break;
case GLP_LO:
stat[j] = GLP_NL;
break;
case GLP_UP:
stat[j] = GLP_NU;
break;
case GLP_DB:
if (cbar[j] >= +DBL_EPSILON)
stat[j] = GLP_NL;
else if (cbar[j] <= -DBL_EPSILON)
stat[j] = GLP_NU;
else if (fabs(lb[k]) <= fabs(ub[k]))
stat[j] = GLP_NL;
else
stat[j] = GLP_NU;
break;
case GLP_FX:
stat[j] = GLP_NS;
break;
default:
xassert(type != type);
}
}
return;
}
/***********************************************************************
* check_stab - check numerical stability of basic solution
*
* If the current basic solution is dual feasible within a tolerance,
* this routine returns zero, otherwise it returns non-zero. */
static int check_stab(struct csa *csa, double tol_dj)
{ int n = csa->n;
char *stat = csa->stat;
double *cbar = csa->cbar;
int j;
for (j = 1; j <= n; j++)
{ if (cbar[j] < - tol_dj)
if (stat[j] == GLP_NL || stat[j] == GLP_NF) return 1;
if (cbar[j] > + tol_dj)
if (stat[j] == GLP_NU || stat[j] == GLP_NF) return 1;
}
return 0;
}
#if 1 /* copied from primal */
/***********************************************************************
* eval_obj - compute original objective function
*
* This routine computes the current value of the original objective
* function. */
static double eval_obj(struct csa *csa)
{ int m = csa->m;
int n = csa->n;
double *obj = csa->obj;
int *head = csa->head;
double *bbar = csa->bbar;
int i, j, k;
double sum;
sum = obj[0];
/* walk through the list of basic variables */
for (i = 1; i <= m; i++)
{ k = head[i]; /* x[k] = xB[i] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (k > m)
sum += obj[k-m] * bbar[i];
}
/* walk through the list of non-basic variables */
for (j = 1; j <= n; j++)
{ k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (k > m)
sum += obj[k-m] * get_xN(csa, j);
}
return sum;
}
#endif
/***********************************************************************
* display - display the search progress
*
* This routine displays some information about the search progress. */
static void display(struct csa *csa, const glp_smcp *parm, int spec)
{ int m = csa->m;
int n = csa->n;
double *coef = csa->coef;
char *orig_type = csa->orig_type;
int *head = csa->head;
char *stat = csa->stat;
int phase = csa->phase;
double *bbar = csa->bbar;
double *cbar = csa->cbar;
int i, j, cnt;
double sum;
if (parm->msg_lev < GLP_MSG_ON) goto skip;
if (parm->out_dly > 0 &&
1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly)
goto skip;
if (csa->it_cnt == csa->it_dpy) goto skip;
if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip;
/* compute the sum of dual infeasibilities */
sum = 0.0;
if (phase == 1)
{ for (i = 1; i <= m; i++)
sum -= coef[head[i]] * bbar[i];
for (j = 1; j <= n; j++)
sum -= coef[head[m+j]] * get_xN(csa, j);
}
else
{ for (j = 1; j <= n; j++)
{ if (cbar[j] < 0.0)
if (stat[j] == GLP_NL || stat[j] == GLP_NF)
sum -= cbar[j];
if (cbar[j] > 0.0)
if (stat[j] == GLP_NU || stat[j] == GLP_NF)
sum += cbar[j];
}
}
/* determine the number of basic fixed variables */
cnt = 0;
for (i = 1; i <= m; i++)
if (orig_type[head[i]] == GLP_FX) cnt++;
if (csa->phase == 1)
xprintf(" %6d: %24s infeas = %10.3e (%d)\n",
csa->it_cnt, "", sum, cnt);
else
xprintf("|%6d: obj = %17.9e infeas = %10.3e (%d)\n",
csa->it_cnt, eval_obj(csa), sum, cnt);
csa->it_dpy = csa->it_cnt;
skip: return;
}
#if 1 /* copied from primal */
/***********************************************************************
* store_sol - store basic solution back to the problem object
*
* This routine stores basic solution components back to the problem
* object. */
static void store_sol(struct csa *csa, glp_prob *lp, int p_stat,
int d_stat, int ray)
{ int m = csa->m;
int n = csa->n;
double zeta = csa->zeta;
int *head = csa->head;
char *stat = csa->stat;
double *bbar = csa->bbar;
double *cbar = csa->cbar;
int i, j, k;
#ifdef GLP_DEBUG
xassert(lp->m == m);
xassert(lp->n == n);
#endif
/* basis factorization */
#ifdef GLP_DEBUG
xassert(!lp->valid && lp->bfd == NULL);
xassert(csa->valid && csa->bfd != NULL);
#endif
lp->valid = 1, csa->valid = 0;
lp->bfd = csa->bfd, csa->bfd = NULL;
memcpy(&lp->head[1], &head[1], m * sizeof(int));
/* basic solution status */
lp->pbs_stat = p_stat;
lp->dbs_stat = d_stat;
/* objective function value */
lp->obj_val = eval_obj(csa);
/* simplex iteration count */
lp->it_cnt = csa->it_cnt;
/* unbounded ray */
lp->some = ray;
/* basic variables */
for (i = 1; i <= m; i++)
{ k = head[i]; /* x[k] = xB[i] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (k <= m)
{ GLPROW *row = lp->row[k];
row->stat = GLP_BS;
row->bind = i;
row->prim = bbar[i] / row->rii;
row->dual = 0.0;
}
else
{ GLPCOL *col = lp->col[k-m];
col->stat = GLP_BS;
col->bind = i;
col->prim = bbar[i] * col->sjj;
col->dual = 0.0;
}
}
/* non-basic variables */
for (j = 1; j <= n; j++)
{ k = head[m+j]; /* x[k] = xN[j] */
#ifdef GLP_DEBUG
xassert(1 <= k && k <= m+n);
#endif
if (k <= m)
{ GLPROW *row = lp->row[k];
row->stat = stat[j];
row->bind = 0;
#if 0
row->prim = get_xN(csa, j) / row->rii;
#else
switch (stat[j])
{ case GLP_NL:
row->prim = row->lb; break;
case GLP_NU:
row->prim = row->ub; break;
case GLP_NF:
row->prim = 0.0; break;
case GLP_NS:
row->prim = row->lb; break;
default:
xassert(stat != stat);
}
#endif
row->dual = (cbar[j] * row->rii) / zeta;
}
else
{ GLPCOL *col = lp->col[k-m];
col->stat = stat[j];
col->bind = 0;
#if 0
col->prim = get_xN(csa, j) * col->sjj;
#else
switch (stat[j])
{ case GLP_NL:
col->prim = col->lb; break;
case GLP_NU:
col->prim = col->ub; break;
case GLP_NF:
col->prim = 0.0; break;
case GLP_NS:
col->prim = col->lb; break;
default:
xassert(stat != stat);
}
#endif
col->dual = (cbar[j] / col->sjj) / zeta;
}
}
return;
}
#endif
/***********************************************************************
* free_csa - deallocate common storage area
*
* This routine frees all the memory allocated to arrays in the common
* storage area (CSA). */
static void free_csa(struct csa *csa)
{ xfree(csa->type);
xfree(csa->lb);
xfree(csa->ub);
xfree(csa->coef);
xfree(csa->orig_type);
xfree(csa->orig_lb);
xfree(csa->orig_ub);
xfree(csa->obj);
xfree(csa->A_ptr);
xfree(csa->A_ind);
xfree(csa->A_val);
#if 1 /* 06/IV-2009 */
xfree(csa->AT_ptr);
xfree(csa->AT_ind);
xfree(csa->AT_val);
#endif
xfree(csa->head);
#if 1 /* 06/IV-2009 */
xfree(csa->bind);
#endif
xfree(csa->stat);
#if 0 /* 06/IV-2009 */
xfree(csa->N_ptr);
xfree(csa->N_len);
xfree(csa->N_ind);
xfree(csa->N_val);
#endif
xfree(csa->bbar);
xfree(csa->cbar);
xfree(csa->refsp);
xfree(csa->gamma);
xfree(csa->trow_ind);
xfree(csa->trow_vec);
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
xfree(csa->bkpt);
#endif
xfree(csa->tcol_ind);
xfree(csa->tcol_vec);
xfree(csa->work1);
xfree(csa->work2);
xfree(csa->work3);
xfree(csa->work4);
xfree(csa);
return;
}
/***********************************************************************
* spx_dual - core LP solver based on the dual simplex method
*
* SYNOPSIS
*
* #include "glpspx.h"
* int spx_dual(glp_prob *lp, const glp_smcp *parm);
*
* DESCRIPTION
*
* The routine spx_dual is a core LP solver based on the two-phase dual
* simplex method.
*
* RETURNS
*
* 0 LP instance has been successfully solved.
*
* GLP_EOBJLL
* Objective lower limit has been reached (maximization).
*
* GLP_EOBJUL
* Objective upper limit has been reached (minimization).
*
* GLP_EITLIM
* Iteration limit has been exhausted.
*
* GLP_ETMLIM
* Time limit has been exhausted.
*
* GLP_EFAIL
* The solver failed to solve LP instance. */
int spx_dual(glp_prob *lp, const glp_smcp *parm)
{ struct csa *csa;
int binv_st = 2;
/* status of basis matrix factorization:
0 - invalid; 1 - just computed; 2 - updated */
int bbar_st = 0;
/* status of primal values of basic variables:
0 - invalid; 1 - just computed; 2 - updated */
int cbar_st = 0;
/* status of reduced costs of non-basic variables:
0 - invalid; 1 - just computed; 2 - updated */
int rigorous = 0;
/* rigorous mode flag; this flag is used to enable iterative
refinement on computing pivot rows and columns of the simplex
table */
int check = 0;
int p_stat, d_stat, ret;
#if 1 /* 16/VII-2013 */
int degen = 0;
/* degenerated step count */
#endif
/* allocate and initialize the common storage area */
csa = alloc_csa(lp);
init_csa(csa, lp);
if (parm->msg_lev >= GLP_MSG_DBG)
xprintf("Objective scale factor = %g\n", csa->zeta);
loop: /* main loop starts here */
/* compute factorization of the basis matrix */
if (binv_st == 0)
{ ret = invert_B(csa);
if (ret != 0)
{ if (parm->msg_lev >= GLP_MSG_ERR)
{ xprintf("Error: unable to factorize the basis matrix (%d"
")\n", ret);
xprintf("Sorry, basis recovery procedure not implemented"
" yet\n");
}
xassert(!lp->valid && lp->bfd == NULL);
lp->bfd = csa->bfd, csa->bfd = NULL;
lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
lp->obj_val = 0.0;
lp->it_cnt = csa->it_cnt;
lp->some = 0;
ret = GLP_EFAIL;
goto done;
}
csa->valid = 1;
binv_st = 1; /* just computed */
/* invalidate basic solution components */
bbar_st = cbar_st = 0;
}
#if 1 /* 16/VII-2013 */
if (degen >= 5000 && parm->meth == GLP_DUALP)
{ if (parm->msg_lev >= GLP_MSG_ERR)
xprintf("Warning: dual degeneracy; switching to primal simp"
"lex\n");
store_sol(csa, lp, GLP_UNDEF, GLP_UNDEF, 0);
ret = GLP_EFAIL;
goto done;
}
#endif
/* compute reduced costs of non-basic variables */
if (cbar_st == 0)
{ eval_cbar(csa);
cbar_st = 1; /* just computed */
/* determine the search phase, if not determined yet */
if (csa->phase == 0)
{ if (check_feas(csa, 0.90 * parm->tol_dj) != 0)
{ /* current basic solution is dual infeasible */
/* start searching for dual feasible solution */
csa->phase = 1;
set_aux_bnds(csa);
}
else
{ /* current basic solution is dual feasible */
/* start searching for optimal solution */
csa->phase = 2;
set_orig_bnds(csa);
}
xassert(check_stab(csa, parm->tol_dj) == 0);
/* some non-basic double-bounded variables might become
fixed (on phase I) or vice versa (on phase II) */
#if 0 /* 06/IV-2009 */
build_N(csa);
#endif
csa->refct = 0;
/* bounds of non-basic variables have been changed, so
invalidate primal values */
bbar_st = 0;
}
/* make sure that the current basic solution remains dual
feasible */
if (check_stab(csa, parm->tol_dj) != 0)
{ if (parm->msg_lev >= GLP_MSG_ERR)
xprintf("Warning: numerical instability (dual simplex, p"
"hase %s)\n", csa->phase == 1 ? "I" : "II");
#if 1
if (parm->meth == GLP_DUALP)
{ store_sol(csa, lp, GLP_UNDEF, GLP_UNDEF, 0);
ret = GLP_EFAIL;
goto done;
}
#endif
/* restart the search */
csa->phase = 0;
binv_st = 0;
rigorous = 5;
goto loop;
}
}
xassert(csa->phase == 1 || csa->phase == 2);
/* on phase I we do not need to wait until the current basic
solution becomes primal feasible; it is sufficient to make
sure that all reduced costs have correct signs */
if (csa->phase == 1 && check_feas(csa, parm->tol_dj) == 0)
{ /* the current basis is dual feasible; switch to phase II */
display(csa, parm, 1);
csa->phase = 2;
if (cbar_st != 1)
{ eval_cbar(csa);
cbar_st = 1;
}
set_orig_bnds(csa);
#if 0 /* 06/IV-2009 */
build_N(csa);
#endif
csa->refct = 0;
bbar_st = 0;
}
/* compute primal values of basic variables */
if (bbar_st == 0)
{ eval_bbar(csa);
if (csa->phase == 2)
csa->bbar[0] = eval_obj(csa);
bbar_st = 1; /* just computed */
}
/* redefine the reference space, if required */
switch (parm->pricing)
{ case GLP_PT_STD:
break;
case GLP_PT_PSE:
if (csa->refct == 0) reset_refsp(csa);
break;
default:
xassert(parm != parm);
}
/* at this point the basis factorization and all basic solution
components are valid */
xassert(binv_st && bbar_st && cbar_st);
/* check accuracy of current basic solution components (only for
debugging) */
if (check)
{ double e_bbar = err_in_bbar(csa);
double e_cbar = err_in_cbar(csa);
double e_gamma =
(parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0);
xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n",
e_bbar, e_cbar, e_gamma);
xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3);
}
/* if the objective has to be maximized, check if it has reached
its lower limit */
if (csa->phase == 2 && csa->zeta < 0.0 &&
parm->obj_ll > -DBL_MAX && csa->bbar[0] <= parm->obj_ll)
{ if (bbar_st != 1 || cbar_st != 1)
{ if (bbar_st != 1) bbar_st = 0;
if (cbar_st != 1) cbar_st = 0;
goto loop;
}
display(csa, parm, 1);
if (parm->msg_lev >= GLP_MSG_ALL)
xprintf("OBJECTIVE LOWER LIMIT REACHED; SEARCH TERMINATED\n"
);
store_sol(csa, lp, GLP_INFEAS, GLP_FEAS, 0);
ret = GLP_EOBJLL;
goto done;
}
/* if the objective has to be minimized, check if it has reached
its upper limit */
if (csa->phase == 2 && csa->zeta > 0.0 &&
parm->obj_ul < +DBL_MAX && csa->bbar[0] >= parm->obj_ul)
{ if (bbar_st != 1 || cbar_st != 1)
{ if (bbar_st != 1) bbar_st = 0;
if (cbar_st != 1) cbar_st = 0;
goto loop;
}
display(csa, parm, 1);
if (parm->msg_lev >= GLP_MSG_ALL)
xprintf("OBJECTIVE UPPER LIMIT REACHED; SEARCH TERMINATED\n"
);
store_sol(csa, lp, GLP_INFEAS, GLP_FEAS, 0);
ret = GLP_EOBJUL;
goto done;
}
/* check if the iteration limit has been exhausted */
if (parm->it_lim < INT_MAX &&
csa->it_cnt - csa->it_beg >= parm->it_lim)
{ if (csa->phase == 2 && bbar_st != 1 || cbar_st != 1)
{ if (csa->phase == 2 && bbar_st != 1) bbar_st = 0;
if (cbar_st != 1) cbar_st = 0;
goto loop;
}
display(csa, parm, 1);
if (parm->msg_lev >= GLP_MSG_ALL)
xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
switch (csa->phase)
{ case 1:
d_stat = GLP_INFEAS;
set_orig_bnds(csa);
eval_bbar(csa);
break;
case 2:
d_stat = GLP_FEAS;
break;
default:
xassert(csa != csa);
}
store_sol(csa, lp, GLP_INFEAS, d_stat, 0);
ret = GLP_EITLIM;
goto done;
}
/* check if the time limit has been exhausted */
if (parm->tm_lim < INT_MAX &&
1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim)
{ if (csa->phase == 2 && bbar_st != 1 || cbar_st != 1)
{ if (csa->phase == 2 && bbar_st != 1) bbar_st = 0;
if (cbar_st != 1) cbar_st = 0;
goto loop;
}
display(csa, parm, 1);
if (parm->msg_lev >= GLP_MSG_ALL)
xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
switch (csa->phase)
{ case 1:
d_stat = GLP_INFEAS;
set_orig_bnds(csa);
eval_bbar(csa);
break;
case 2:
d_stat = GLP_FEAS;
break;
default:
xassert(csa != csa);
}
store_sol(csa, lp, GLP_INFEAS, d_stat, 0);
ret = GLP_ETMLIM;
goto done;
}
/* display the search progress */
display(csa, parm, 0);
/* choose basic variable xB[p] */
chuzr(csa, parm->tol_bnd);
if (csa->p == 0)
{ if (bbar_st != 1 || cbar_st != 1)
{ if (bbar_st != 1) bbar_st = 0;
if (cbar_st != 1) cbar_st = 0;
goto loop;
}
display(csa, parm, 1);
switch (csa->phase)
{ case 1:
if (parm->msg_lev >= GLP_MSG_ALL)
#if 0 /* 13/VII-2013; suggested by Prof. Fischetti */
xprintf("PROBLEM HAS NO DUAL FEASIBLE SOLUTION\n");
#else
xprintf("LP HAS NO DUAL FEASIBLE SOLUTION\n");
#endif
set_orig_bnds(csa);
eval_bbar(csa);
p_stat = GLP_INFEAS, d_stat = GLP_NOFEAS;
break;
case 2:
if (parm->msg_lev >= GLP_MSG_ALL)
#if 0 /* 13/VII-2013; suggested by Prof. Fischetti */
xprintf("OPTIMAL SOLUTION FOUND\n");
#else
xprintf("OPTIMAL LP SOLUTION FOUND\n");
#endif
p_stat = d_stat = GLP_FEAS;
break;
default:
xassert(csa != csa);
}
store_sol(csa, lp, p_stat, d_stat, 0);
ret = 0;
goto done;
}
/* compute pivot row of the simplex table */
{ double *rho = csa->work4;
eval_rho(csa, rho);
if (rigorous) refine_rho(csa, rho);
eval_trow(csa, rho);
sort_trow(csa, parm->tol_bnd);
}
/* unlike primal simplex there is no need to check accuracy of
the primal value of xB[p] (which might be computed using the
pivot row), since bbar is a result of FTRAN */
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
long_step(csa);
if (csa->nbps > 0)
{ csa->q = csa->bkpt[csa->nbps].j;
if (csa->delta > 0.0)
csa->new_dq = + csa->bkpt[csa->nbps].t;
else
csa->new_dq = - csa->bkpt[csa->nbps].t;
}
else
#endif
/* choose non-basic variable xN[q] */
switch (parm->r_test)
{ case GLP_RT_STD:
chuzc(csa, 0.0);
break;
case GLP_RT_HAR:
chuzc(csa, 0.30 * parm->tol_dj);
break;
default:
xassert(parm != parm);
}
if (csa->q == 0)
{ if (bbar_st != 1 || cbar_st != 1 || !rigorous)
{ if (bbar_st != 1) bbar_st = 0;
if (cbar_st != 1) cbar_st = 0;
rigorous = 1;
goto loop;
}
display(csa, parm, 1);
switch (csa->phase)
{ case 1:
if (parm->msg_lev >= GLP_MSG_ERR)
xprintf("Error: unable to choose non-basic variable o"
"n phase I\n");
xassert(!lp->valid && lp->bfd == NULL);
lp->bfd = csa->bfd, csa->bfd = NULL;
lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
lp->obj_val = 0.0;
lp->it_cnt = csa->it_cnt;
lp->some = 0;
ret = GLP_EFAIL;
break;
case 2:
if (parm->msg_lev >= GLP_MSG_ALL)
#if 0 /* 13/VII-2013; suggested by Prof. Fischetti */
xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
#else
xprintf("LP HAS UNBOUNDED DUAL SOLUTION\n");
#endif
store_sol(csa, lp, GLP_NOFEAS, GLP_FEAS,
csa->head[csa->p]);
ret = 0;
break;
default:
xassert(csa != csa);
}
goto done;
}
/* check if the pivot element is acceptable */
{ double piv = csa->trow_vec[csa->q];
double eps = 1e-5 * (1.0 + 0.01 * csa->trow_max);
if (fabs(piv) < eps)
{ if (parm->msg_lev >= GLP_MSG_DBG)
xprintf("piv = %.12g; eps = %g\n", piv, eps);
if (!rigorous)
{ rigorous = 5;
goto loop;
}
}
}
/* now xN[q] and xB[p] have been chosen anyhow */
/* compute pivot column of the simplex table */
eval_tcol(csa);
if (rigorous) refine_tcol(csa);
/* accuracy check based on the pivot element */
{ double piv1 = csa->tcol_vec[csa->p]; /* more accurate */
double piv2 = csa->trow_vec[csa->q]; /* less accurate */
xassert(piv1 != 0.0);
if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) ||
!(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0))
{ if (parm->msg_lev >= GLP_MSG_DBG)
xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2);
if (binv_st != 1 || !rigorous)
{ if (binv_st != 1) binv_st = 0;
rigorous = 5;
goto loop;
}
/* (not a good idea; should be revised later) */
if (csa->tcol_vec[csa->p] == 0.0)
{ csa->tcol_nnz++;
xassert(csa->tcol_nnz <= csa->m);
csa->tcol_ind[csa->tcol_nnz] = csa->p;
}
csa->tcol_vec[csa->p] = piv2;
}
}
/* update primal values of basic variables */
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
if (csa->nbps > 0)
{ int kk, j, k;
for (kk = 1; kk < csa->nbps; kk++)
{ if (csa->bkpt[kk].t >= csa->bkpt[csa->nbps].t) continue;
j = csa->bkpt[kk].j;
k = csa->head[csa->m + j];
xassert(csa->type[k] == GLP_DB);
if (csa->stat[j] == GLP_NL)
csa->stat[j] = GLP_NU;
else
csa->stat[j] = GLP_NL;
}
}
bbar_st = 0;
#else
update_bbar(csa);
if (csa->phase == 2)
csa->bbar[0] += (csa->cbar[csa->q] / csa->zeta) *
(csa->delta / csa->tcol_vec[csa->p]);
bbar_st = 2; /* updated */
#endif
/* update reduced costs of non-basic variables */
update_cbar(csa);
cbar_st = 2; /* updated */
/* update steepest edge coefficients */
switch (parm->pricing)
{ case GLP_PT_STD:
break;
case GLP_PT_PSE:
if (csa->refct > 0) update_gamma(csa);
break;
default:
xassert(parm != parm);
}
/* update factorization of the basis matrix */
ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]);
if (ret == 0)
binv_st = 2; /* updated */
else
{ csa->valid = 0;
binv_st = 0; /* invalid */
}
#if 0 /* 06/IV-2009 */
/* update matrix N */
del_N_col(csa, csa->q, csa->head[csa->m+csa->q]);
if (csa->type[csa->head[csa->p]] != GLP_FX)
add_N_col(csa, csa->q, csa->head[csa->p]);
#endif
/* change the basis header */
change_basis(csa);
/* iteration complete */
csa->it_cnt++;
#if 1 /* 16/VII-2013 */
if (-1e-9 <= csa->new_dq && csa->new_dq <= +1e-9)
{ /* degenerated step */
degen++;
}
else
{ /* non-degenerated step */
degen = 0;
}
#endif
if (rigorous > 0) rigorous--;
goto loop;
done: /* deallocate the common storage area */
free_csa(csa);
/* return to the calling program */
return ret;
}
/* eof */