You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1501 lines
50 KiB

/* glpnpp06.c (translate feasibility problem to CNF-SAT) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpnpp.h"
/***********************************************************************
* npp_sat_free_row - process free (unbounded) row
*
* This routine processes row p, which is free (i.e. has no finite
* bounds):
*
* -inf < sum a[p,j] x[j] < +inf. (1)
*
* The constraint (1) cannot be active and therefore it is redundant,
* so the routine simply removes it from the original problem. */
void npp_sat_free_row(NPP *npp, NPPROW *p)
{ /* the row should be free */
xassert(p->lb == -DBL_MAX && p->ub == +DBL_MAX);
/* remove the row from the problem */
npp_del_row(npp, p);
return;
}
/***********************************************************************
* npp_sat_fixed_col - process fixed column
*
* This routine processes column q, which is fixed:
*
* x[q] = s[q], (1)
*
* where s[q] is a fixed column value.
*
* The routine substitutes fixed value s[q] into constraint rows and
* then removes column x[q] from the original problem.
*
* Substitution of x[q] = s[q] into row i gives:
*
* L[i] <= sum a[i,j] x[j] <= U[i] ==>
* j
*
* L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
* j!=q
*
* L[i] <= sum a[i,j] x[j] + a[i,q] s[q] <= U[i] ==>
* j!=q
*
* L~[i] <= sum a[i,j] x[j] <= U~[i],
* j!=q
*
* where
*
* L~[i] = L[i] - a[i,q] s[q], (2)
*
* U~[i] = U[i] - a[i,q] s[q] (3)
*
* are, respectively, lower and upper bound of row i in the transformed
* problem.
*
* On recovering solution x[q] is assigned the value of s[q]. */
struct sat_fixed_col
{ /* fixed column */
int q;
/* column reference number for variable x[q] */
int s;
/* value, at which x[q] is fixed */
};
static int rcv_sat_fixed_col(NPP *, void *);
int npp_sat_fixed_col(NPP *npp, NPPCOL *q)
{ struct sat_fixed_col *info;
NPPROW *i;
NPPAIJ *aij;
int temp;
/* the column should be fixed */
xassert(q->lb == q->ub);
/* create transformation stack entry */
info = npp_push_tse(npp,
rcv_sat_fixed_col, sizeof(struct sat_fixed_col));
info->q = q->j;
info->s = (int)q->lb;
xassert((double)info->s == q->lb);
/* substitute x[q] = s[q] into constraint rows */
if (info->s == 0)
goto skip;
for (aij = q->ptr; aij != NULL; aij = aij->c_next)
{ i = aij->row;
if (i->lb != -DBL_MAX)
{ i->lb -= aij->val * (double)info->s;
temp = (int)i->lb;
if ((double)temp != i->lb)
return 1; /* integer arithmetic error */
}
if (i->ub != +DBL_MAX)
{ i->ub -= aij->val * (double)info->s;
temp = (int)i->ub;
if ((double)temp != i->ub)
return 2; /* integer arithmetic error */
}
}
skip: /* remove the column from the problem */
npp_del_col(npp, q);
return 0;
}
static int rcv_sat_fixed_col(NPP *npp, void *info_)
{ struct sat_fixed_col *info = info_;
npp->c_value[info->q] = (double)info->s;
return 0;
}
/***********************************************************************
* npp_sat_is_bin_comb - test if row is binary combination
*
* This routine tests if the specified row is a binary combination,
* i.e. all its constraint coefficients are +1 and -1 and all variables
* are binary. If the test was passed, the routine returns non-zero,
* otherwise zero. */
int npp_sat_is_bin_comb(NPP *npp, NPPROW *row)
{ NPPCOL *col;
NPPAIJ *aij;
xassert(npp == npp);
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ if (!(aij->val == +1.0 || aij->val == -1.0))
return 0; /* non-unity coefficient */
col = aij->col;
if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
return 0; /* non-binary column */
}
return 1; /* test was passed */
}
/***********************************************************************
* npp_sat_num_pos_coef - determine number of positive coefficients
*
* This routine returns the number of positive coefficients in the
* specified row. */
int npp_sat_num_pos_coef(NPP *npp, NPPROW *row)
{ NPPAIJ *aij;
int num = 0;
xassert(npp == npp);
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ if (aij->val > 0.0)
num++;
}
return num;
}
/***********************************************************************
* npp_sat_num_neg_coef - determine number of negative coefficients
*
* This routine returns the number of negative coefficients in the
* specified row. */
int npp_sat_num_neg_coef(NPP *npp, NPPROW *row)
{ NPPAIJ *aij;
int num = 0;
xassert(npp == npp);
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ if (aij->val < 0.0)
num++;
}
return num;
}
/***********************************************************************
* npp_sat_is_cover_ineq - test if row is covering inequality
*
* The canonical form of a covering inequality is the following:
*
* sum x[j] >= 1, (1)
* j in J
*
* where all x[j] are binary variables.
*
* In general case a covering inequality may have one of the following
* two forms:
*
* sum x[j] - sum x[j] >= 1 - |J-|, (2)
* j in J+ j in J-
*
*
* sum x[j] - sum x[j] <= |J+| - 1. (3)
* j in J+ j in J-
*
* Obviously, the inequality (2) can be transformed to the form (1) by
* substitution x[j] = 1 - x'[j] for all j in J-, where x'[j] is the
* negation of variable x[j]. And the inequality (3) can be transformed
* to (2) by multiplying both left- and right-hand sides by -1.
*
* This routine returns one of the following codes:
*
* 0, if the specified row is not a covering inequality;
*
* 1, if the specified row has the form (2);
*
* 2, if the specified row has the form (3). */
int npp_sat_is_cover_ineq(NPP *npp, NPPROW *row)
{ xassert(npp == npp);
if (row->lb != -DBL_MAX && row->ub == +DBL_MAX)
{ /* row is inequality of '>=' type */
if (npp_sat_is_bin_comb(npp, row))
{ /* row is a binary combination */
if (row->lb == 1.0 - npp_sat_num_neg_coef(npp, row))
{ /* row has the form (2) */
return 1;
}
}
}
else if (row->lb == -DBL_MAX && row->ub != +DBL_MAX)
{ /* row is inequality of '<=' type */
if (npp_sat_is_bin_comb(npp, row))
{ /* row is a binary combination */
if (row->ub == npp_sat_num_pos_coef(npp, row) - 1.0)
{ /* row has the form (3) */
return 2;
}
}
}
/* row is not a covering inequality */
return 0;
}
/***********************************************************************
* npp_sat_is_pack_ineq - test if row is packing inequality
*
* The canonical form of a packing inequality is the following:
*
* sum x[j] <= 1, (1)
* j in J
*
* where all x[j] are binary variables.
*
* In general case a packing inequality may have one of the following
* two forms:
*
* sum x[j] - sum x[j] <= 1 - |J-|, (2)
* j in J+ j in J-
*
*
* sum x[j] - sum x[j] >= |J+| - 1. (3)
* j in J+ j in J-
*
* Obviously, the inequality (2) can be transformed to the form (1) by
* substitution x[j] = 1 - x'[j] for all j in J-, where x'[j] is the
* negation of variable x[j]. And the inequality (3) can be transformed
* to (2) by multiplying both left- and right-hand sides by -1.
*
* This routine returns one of the following codes:
*
* 0, if the specified row is not a packing inequality;
*
* 1, if the specified row has the form (2);
*
* 2, if the specified row has the form (3). */
int npp_sat_is_pack_ineq(NPP *npp, NPPROW *row)
{ xassert(npp == npp);
if (row->lb == -DBL_MAX && row->ub != +DBL_MAX)
{ /* row is inequality of '<=' type */
if (npp_sat_is_bin_comb(npp, row))
{ /* row is a binary combination */
if (row->ub == 1.0 - npp_sat_num_neg_coef(npp, row))
{ /* row has the form (2) */
return 1;
}
}
}
else if (row->lb != -DBL_MAX && row->ub == +DBL_MAX)
{ /* row is inequality of '>=' type */
if (npp_sat_is_bin_comb(npp, row))
{ /* row is a binary combination */
if (row->lb == npp_sat_num_pos_coef(npp, row) - 1.0)
{ /* row has the form (3) */
return 2;
}
}
}
/* row is not a packing inequality */
return 0;
}
/***********************************************************************
* npp_sat_is_partn_eq - test if row is partitioning equality
*
* The canonical form of a partitioning equality is the following:
*
* sum x[j] = 1, (1)
* j in J
*
* where all x[j] are binary variables.
*
* In general case a partitioning equality may have one of the following
* two forms:
*
* sum x[j] - sum x[j] = 1 - |J-|, (2)
* j in J+ j in J-
*
*
* sum x[j] - sum x[j] = |J+| - 1. (3)
* j in J+ j in J-
*
* Obviously, the equality (2) can be transformed to the form (1) by
* substitution x[j] = 1 - x'[j] for all j in J-, where x'[j] is the
* negation of variable x[j]. And the equality (3) can be transformed
* to (2) by multiplying both left- and right-hand sides by -1.
*
* This routine returns one of the following codes:
*
* 0, if the specified row is not a partitioning equality;
*
* 1, if the specified row has the form (2);
*
* 2, if the specified row has the form (3). */
int npp_sat_is_partn_eq(NPP *npp, NPPROW *row)
{ xassert(npp == npp);
if (row->lb == row->ub)
{ /* row is equality constraint */
if (npp_sat_is_bin_comb(npp, row))
{ /* row is a binary combination */
if (row->lb == 1.0 - npp_sat_num_neg_coef(npp, row))
{ /* row has the form (2) */
return 1;
}
if (row->ub == npp_sat_num_pos_coef(npp, row) - 1.0)
{ /* row has the form (3) */
return 2;
}
}
}
/* row is not a partitioning equality */
return 0;
}
/***********************************************************************
* npp_sat_reverse_row - multiply both sides of row by -1
*
* This routines multiplies by -1 both left- and right-hand sides of
* the specified row:
*
* L <= sum x[j] <= U,
*
* that results in the following row:
*
* -U <= sum (-x[j]) <= -L.
*
* If no integer overflow occured, the routine returns zero, otherwise
* non-zero. */
int npp_sat_reverse_row(NPP *npp, NPPROW *row)
{ NPPAIJ *aij;
int temp, ret = 0;
double old_lb, old_ub;
xassert(npp == npp);
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ aij->val = -aij->val;
temp = (int)aij->val;
if ((double)temp != aij->val)
ret = 1;
}
old_lb = row->lb, old_ub = row->ub;
if (old_ub == +DBL_MAX)
row->lb = -DBL_MAX;
else
{ row->lb = -old_ub;
temp = (int)row->lb;
if ((double)temp != row->lb)
ret = 2;
}
if (old_lb == -DBL_MAX)
row->ub = +DBL_MAX;
else
{ row->ub = -old_lb;
temp = (int)row->ub;
if ((double)temp != row->ub)
ret = 3;
}
return ret;
}
/***********************************************************************
* npp_sat_split_pack - split packing inequality
*
* Let there be given a packing inequality in canonical form:
*
* sum t[j] <= 1, (1)
* j in J
*
* where t[j] = x[j] or t[j] = 1 - x[j], x[j] is a binary variable.
* And let J = J1 U J2 is a partition of the set of literals. Then the
* inequality (1) is obviously equivalent to the following two packing
* inequalities:
*
* sum t[j] <= y <--> sum t[j] + (1 - y) <= 1, (2)
* j in J1 j in J1
*
* sum t[j] <= 1 - y <--> sum t[j] + y <= 1, (3)
* j in J2 j in J2
*
* where y is a new binary variable added to the transformed problem.
*
* Assuming that the specified row is a packing inequality (1), this
* routine constructs the set J1 by including there first nlit literals
* (terms) from the specified row, and the set J2 = J \ J1. Then the
* routine creates a new row, which corresponds to inequality (2), and
* replaces the specified row with inequality (3). */
NPPROW *npp_sat_split_pack(NPP *npp, NPPROW *row, int nlit)
{ NPPROW *rrr;
NPPCOL *col;
NPPAIJ *aij;
int k;
/* original row should be packing inequality (1) */
xassert(npp_sat_is_pack_ineq(npp, row) == 1);
/* and nlit should be less than the number of literals (terms)
in the original row */
xassert(0 < nlit && nlit < npp_row_nnz(npp, row));
/* create new row corresponding to inequality (2) */
rrr = npp_add_row(npp);
rrr->lb = -DBL_MAX, rrr->ub = 1.0;
/* move first nlit literals (terms) from the original row to the
new row; the original row becomes inequality (3) */
for (k = 1; k <= nlit; k++)
{ aij = row->ptr;
xassert(aij != NULL);
/* add literal to the new row */
npp_add_aij(npp, rrr, aij->col, aij->val);
/* correct rhs */
if (aij->val < 0.0)
rrr->ub -= 1.0, row->ub += 1.0;
/* remove literal from the original row */
npp_del_aij(npp, aij);
}
/* create new binary variable y */
col = npp_add_col(npp);
col->is_int = 1, col->lb = 0.0, col->ub = 1.0;
/* include literal (1 - y) in the new row */
npp_add_aij(npp, rrr, col, -1.0);
rrr->ub -= 1.0;
/* include literal y in the original row */
npp_add_aij(npp, row, col, +1.0);
return rrr;
}
/***********************************************************************
* npp_sat_encode_pack - encode packing inequality
*
* Given a packing inequality in canonical form:
*
* sum t[j] <= 1, (1)
* j in J
*
* where t[j] = x[j] or t[j] = 1 - x[j], x[j] is a binary variable,
* this routine translates it to CNF by replacing it with the following
* equivalent set of edge packing inequalities:
*
* t[j] + t[k] <= 1 for all j, k in J, j != k. (2)
*
* Then the routine transforms each edge packing inequality (2) to
* corresponding covering inequality (that encodes two-literal clause)
* by multiplying both its part by -1:
*
* - t[j] - t[k] >= -1 <--> (1 - t[j]) + (1 - t[k]) >= 1. (3)
*
* On exit the routine removes the original row from the problem. */
void npp_sat_encode_pack(NPP *npp, NPPROW *row)
{ NPPROW *rrr;
NPPAIJ *aij, *aik;
/* original row should be packing inequality (1) */
xassert(npp_sat_is_pack_ineq(npp, row) == 1);
/* create equivalent system of covering inequalities (3) */
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ /* due to symmetry only one of inequalities t[j] + t[k] <= 1
and t[k] <= t[j] <= 1 can be considered */
for (aik = aij->r_next; aik != NULL; aik = aik->r_next)
{ /* create edge packing inequality (2) */
rrr = npp_add_row(npp);
rrr->lb = -DBL_MAX, rrr->ub = 1.0;
npp_add_aij(npp, rrr, aij->col, aij->val);
if (aij->val < 0.0)
rrr->ub -= 1.0;
npp_add_aij(npp, rrr, aik->col, aik->val);
if (aik->val < 0.0)
rrr->ub -= 1.0;
/* and transform it to covering inequality (3) */
npp_sat_reverse_row(npp, rrr);
xassert(npp_sat_is_cover_ineq(npp, rrr) == 1);
}
}
/* remove the original row from the problem */
npp_del_row(npp, row);
return;
}
/***********************************************************************
* npp_sat_encode_sum2 - encode 2-bit summation
*
* Given a set containing two literals x and y this routine encodes
* the equality
*
* x + y = s + 2 * c, (1)
*
* where
*
* s = (x + y) % 2 (2)
*
* is a binary variable modeling the low sum bit, and
*
* c = (x + y) / 2 (3)
*
* is a binary variable modeling the high (carry) sum bit. */
void npp_sat_encode_sum2(NPP *npp, NPPLSE *set, NPPSED *sed)
{ NPPROW *row;
int x, y, s, c;
/* the set should contain exactly two literals */
xassert(set != NULL);
xassert(set->next != NULL);
xassert(set->next->next == NULL);
sed->x = set->lit;
xassert(sed->x.neg == 0 || sed->x.neg == 1);
sed->y = set->next->lit;
xassert(sed->y.neg == 0 || sed->y.neg == 1);
sed->z.col = NULL, sed->z.neg = 0;
/* perform encoding s = (x + y) % 2 */
sed->s = npp_add_col(npp);
sed->s->is_int = 1, sed->s->lb = 0.0, sed->s->ub = 1.0;
for (x = 0; x <= 1; x++)
{ for (y = 0; y <= 1; y++)
{ for (s = 0; s <= 1; s++)
{ if ((x + y) % 2 != s)
{ /* generate CNF clause to disable infeasible
combination */
row = npp_add_row(npp);
row->lb = 1.0, row->ub = +DBL_MAX;
if (x == sed->x.neg)
npp_add_aij(npp, row, sed->x.col, +1.0);
else
{ npp_add_aij(npp, row, sed->x.col, -1.0);
row->lb -= 1.0;
}
if (y == sed->y.neg)
npp_add_aij(npp, row, sed->y.col, +1.0);
else
{ npp_add_aij(npp, row, sed->y.col, -1.0);
row->lb -= 1.0;
}
if (s == 0)
npp_add_aij(npp, row, sed->s, +1.0);
else
{ npp_add_aij(npp, row, sed->s, -1.0);
row->lb -= 1.0;
}
}
}
}
}
/* perform encoding c = (x + y) / 2 */
sed->c = npp_add_col(npp);
sed->c->is_int = 1, sed->c->lb = 0.0, sed->c->ub = 1.0;
for (x = 0; x <= 1; x++)
{ for (y = 0; y <= 1; y++)
{ for (c = 0; c <= 1; c++)
{ if ((x + y) / 2 != c)
{ /* generate CNF clause to disable infeasible
combination */
row = npp_add_row(npp);
row->lb = 1.0, row->ub = +DBL_MAX;
if (x == sed->x.neg)
npp_add_aij(npp, row, sed->x.col, +1.0);
else
{ npp_add_aij(npp, row, sed->x.col, -1.0);
row->lb -= 1.0;
}
if (y == sed->y.neg)
npp_add_aij(npp, row, sed->y.col, +1.0);
else
{ npp_add_aij(npp, row, sed->y.col, -1.0);
row->lb -= 1.0;
}
if (c == 0)
npp_add_aij(npp, row, sed->c, +1.0);
else
{ npp_add_aij(npp, row, sed->c, -1.0);
row->lb -= 1.0;
}
}
}
}
}
return;
}
/***********************************************************************
* npp_sat_encode_sum3 - encode 3-bit summation
*
* Given a set containing at least three literals this routine chooses
* some literals x, y, z from that set and encodes the equality
*
* x + y + z = s + 2 * c, (1)
*
* where
*
* s = (x + y + z) % 2 (2)
*
* is a binary variable modeling the low sum bit, and
*
* c = (x + y + z) / 2 (3)
*
* is a binary variable modeling the high (carry) sum bit. */
void npp_sat_encode_sum3(NPP *npp, NPPLSE *set, NPPSED *sed)
{ NPPROW *row;
int x, y, z, s, c;
/* the set should contain at least three literals */
xassert(set != NULL);
xassert(set->next != NULL);
xassert(set->next->next != NULL);
sed->x = set->lit;
xassert(sed->x.neg == 0 || sed->x.neg == 1);
sed->y = set->next->lit;
xassert(sed->y.neg == 0 || sed->y.neg == 1);
sed->z = set->next->next->lit;
xassert(sed->z.neg == 0 || sed->z.neg == 1);
/* perform encoding s = (x + y + z) % 2 */
sed->s = npp_add_col(npp);
sed->s->is_int = 1, sed->s->lb = 0.0, sed->s->ub = 1.0;
for (x = 0; x <= 1; x++)
{ for (y = 0; y <= 1; y++)
{ for (z = 0; z <= 1; z++)
{ for (s = 0; s <= 1; s++)
{ if ((x + y + z) % 2 != s)
{ /* generate CNF clause to disable infeasible
combination */
row = npp_add_row(npp);
row->lb = 1.0, row->ub = +DBL_MAX;
if (x == sed->x.neg)
npp_add_aij(npp, row, sed->x.col, +1.0);
else
{ npp_add_aij(npp, row, sed->x.col, -1.0);
row->lb -= 1.0;
}
if (y == sed->y.neg)
npp_add_aij(npp, row, sed->y.col, +1.0);
else
{ npp_add_aij(npp, row, sed->y.col, -1.0);
row->lb -= 1.0;
}
if (z == sed->z.neg)
npp_add_aij(npp, row, sed->z.col, +1.0);
else
{ npp_add_aij(npp, row, sed->z.col, -1.0);
row->lb -= 1.0;
}
if (s == 0)
npp_add_aij(npp, row, sed->s, +1.0);
else
{ npp_add_aij(npp, row, sed->s, -1.0);
row->lb -= 1.0;
}
}
}
}
}
}
/* perform encoding c = (x + y + z) / 2 */
sed->c = npp_add_col(npp);
sed->c->is_int = 1, sed->c->lb = 0.0, sed->c->ub = 1.0;
for (x = 0; x <= 1; x++)
{ for (y = 0; y <= 1; y++)
{ for (z = 0; z <= 1; z++)
{ for (c = 0; c <= 1; c++)
{ if ((x + y + z) / 2 != c)
{ /* generate CNF clause to disable infeasible
combination */
row = npp_add_row(npp);
row->lb = 1.0, row->ub = +DBL_MAX;
if (x == sed->x.neg)
npp_add_aij(npp, row, sed->x.col, +1.0);
else
{ npp_add_aij(npp, row, sed->x.col, -1.0);
row->lb -= 1.0;
}
if (y == sed->y.neg)
npp_add_aij(npp, row, sed->y.col, +1.0);
else
{ npp_add_aij(npp, row, sed->y.col, -1.0);
row->lb -= 1.0;
}
if (z == sed->z.neg)
npp_add_aij(npp, row, sed->z.col, +1.0);
else
{ npp_add_aij(npp, row, sed->z.col, -1.0);
row->lb -= 1.0;
}
if (c == 0)
npp_add_aij(npp, row, sed->c, +1.0);
else
{ npp_add_aij(npp, row, sed->c, -1.0);
row->lb -= 1.0;
}
}
}
}
}
}
return;
}
/***********************************************************************
* npp_sat_encode_sum_ax - encode linear combination of 0-1 variables
*
* PURPOSE
*
* Given a linear combination of binary variables:
*
* sum a[j] x[j], (1)
* j
*
* which is the linear form of the specified row, this routine encodes
* (i.e. translates to CNF) the following equality:
*
* n
* sum |a[j]| t[j] = sum 2**(k-1) * y[k], (2)
* j k=1
*
* where t[j] = x[j] (if a[j] > 0) or t[j] = 1 - x[j] (if a[j] < 0),
* and y[k] is either t[j] or a new literal created by the routine or
* a constant zero. Note that the sum in the right-hand side of (2) can
* be thought as a n-bit representation of the sum in the left-hand
* side, which is a non-negative integer number.
*
* ALGORITHM
*
* First, the number of bits, n, sufficient to represent any value in
* the left-hand side of (2) is determined. Obviously, n is the number
* of bits sufficient to represent the sum (sum |a[j]|).
*
* Let
*
* n
* |a[j]| = sum 2**(k-1) b[j,k], (3)
* k=1
*
* where b[j,k] is k-th bit in a n-bit representation of |a[j]|. Then
*
* m n
* sum |a[j]| * t[j] = sum 2**(k-1) sum b[j,k] * t[j]. (4)
* j k=1 j=1
*
* Introducing the set
*
* J[k] = { j : b[j,k] = 1 } (5)
*
* allows rewriting (4) as follows:
*
* n
* sum |a[j]| * t[j] = sum 2**(k-1) sum t[j]. (6)
* j k=1 j in J[k]
*
* Thus, our goal is to provide |J[k]| <= 1 for all k, in which case
* we will have the representation (1).
*
* Let |J[k]| = 2, i.e. J[k] has exactly two literals u and v. In this
* case we can apply the following transformation:
*
* u + v = s + 2 * c, (7)
*
* where s and c are, respectively, low (sum) and high (carry) bits of
* the sum of two bits. This allows to replace two literals u and v in
* J[k] by one literal s, and carry out literal c to J[k+1].
*
* If |J[k]| >= 3, i.e. J[k] has at least three literals u, v, and w,
* we can apply the following transformation:
*
* u + v + w = s + 2 * c. (8)
*
* Again, literal s replaces literals u, v, and w in J[k], and literal
* c goes into J[k+1].
*
* On exit the routine stores each literal from J[k] in element y[k],
* 1 <= k <= n. If J[k] is empty, y[k] is set to constant false.
*
* RETURNS
*
* The routine returns n, the number of literals in the right-hand side
* of (2), 0 <= n <= NBIT_MAX. If the sum (sum |a[j]|) is too large, so
* more than NBIT_MAX (= 31) literals are needed to encode the original
* linear combination, the routine returns a negative value. */
#define NBIT_MAX 31
/* maximal number of literals in the right hand-side of (2) */
static NPPLSE *remove_lse(NPP *npp, NPPLSE *set, NPPCOL *col)
{ /* remove specified literal from specified literal set */
NPPLSE *lse, *prev = NULL;
for (lse = set; lse != NULL; prev = lse, lse = lse->next)
if (lse->lit.col == col) break;
xassert(lse != NULL);
if (prev == NULL)
set = lse->next;
else
prev->next = lse->next;
dmp_free_atom(npp->pool, lse, sizeof(NPPLSE));
return set;
}
int npp_sat_encode_sum_ax(NPP *npp, NPPROW *row, NPPLIT y[])
{ NPPAIJ *aij;
NPPLSE *set[1+NBIT_MAX], *lse;
NPPSED sed;
int k, n, temp;
double sum;
/* compute the sum (sum |a[j]|) */
sum = 0.0;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
sum += fabs(aij->val);
/* determine n, the number of bits in the sum */
temp = (int)sum;
if ((double)temp != sum)
return -1; /* integer arithmetic error */
for (n = 0; temp > 0; n++, temp >>= 1);
xassert(0 <= n && n <= NBIT_MAX);
/* build initial sets J[k], 1 <= k <= n; see (5) */
/* set[k] is a pointer to the list of literals in J[k] */
for (k = 1; k <= n; k++)
set[k] = NULL;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ temp = (int)fabs(aij->val);
xassert((int)temp == fabs(aij->val));
for (k = 1; temp > 0; k++, temp >>= 1)
{ if (temp & 1)
{ xassert(k <= n);
lse = dmp_get_atom(npp->pool, sizeof(NPPLSE));
lse->lit.col = aij->col;
lse->lit.neg = (aij->val > 0.0 ? 0 : 1);
lse->next = set[k];
set[k] = lse;
}
}
}
/* main transformation loop */
for (k = 1; k <= n; k++)
{ /* reduce J[k] and set y[k] */
for (;;)
{ if (set[k] == NULL)
{ /* J[k] is empty */
/* set y[k] to constant false */
y[k].col = NULL, y[k].neg = 0;
break;
}
if (set[k]->next == NULL)
{ /* J[k] contains one literal */
/* set y[k] to that literal */
y[k] = set[k]->lit;
dmp_free_atom(npp->pool, set[k], sizeof(NPPLSE));
break;
}
if (set[k]->next->next == NULL)
{ /* J[k] contains two literals */
/* apply transformation (7) */
npp_sat_encode_sum2(npp, set[k], &sed);
}
else
{ /* J[k] contains at least three literals */
/* apply transformation (8) */
npp_sat_encode_sum3(npp, set[k], &sed);
/* remove third literal from set[k] */
set[k] = remove_lse(npp, set[k], sed.z.col);
}
/* remove second literal from set[k] */
set[k] = remove_lse(npp, set[k], sed.y.col);
/* remove first literal from set[k] */
set[k] = remove_lse(npp, set[k], sed.x.col);
/* include new literal s to set[k] */
lse = dmp_get_atom(npp->pool, sizeof(NPPLSE));
lse->lit.col = sed.s, lse->lit.neg = 0;
lse->next = set[k];
set[k] = lse;
/* include new literal c to set[k+1] */
xassert(k < n); /* FIXME: can "overflow" happen? */
lse = dmp_get_atom(npp->pool, sizeof(NPPLSE));
lse->lit.col = sed.c, lse->lit.neg = 0;
lse->next = set[k+1];
set[k+1] = lse;
}
}
return n;
}
/***********************************************************************
* npp_sat_normalize_clause - normalize clause
*
* This routine normalizes the specified clause, which is a disjunction
* of literals, by replacing multiple literals, which refer to the same
* binary variable, with a single literal.
*
* On exit the routine returns the number of literals in the resulting
* clause. However, if the specified clause includes both a literal and
* its negation, the routine returns a negative value meaning that the
* clause is equivalent to the value true. */
int npp_sat_normalize_clause(NPP *npp, int size, NPPLIT lit[])
{ int j, k, new_size;
xassert(npp == npp);
xassert(size >= 0);
new_size = 0;
for (k = 1; k <= size; k++)
{ for (j = 1; j <= new_size; j++)
{ if (lit[k].col == lit[j].col)
{ /* lit[k] refers to the same variable as lit[j], which
is already included in the resulting clause */
if (lit[k].neg == lit[j].neg)
{ /* ignore lit[k] due to the idempotent law */
goto skip;
}
else
{ /* lit[k] is NOT lit[j]; the clause is equivalent to
the value true */
return -1;
}
}
}
/* include lit[k] in the resulting clause */
lit[++new_size] = lit[k];
skip: ;
}
return new_size;
}
/***********************************************************************
* npp_sat_encode_clause - translate clause to cover inequality
*
* Given a clause
*
* OR t[j], (1)
* j in J
*
* where t[j] is a literal, i.e. t[j] = x[j] or t[j] = NOT x[j], this
* routine translates it to the following equivalent cover inequality,
* which is added to the transformed problem:
*
* sum t[j] >= 1, (2)
* j in J
*
* where t[j] = x[j] or t[j] = 1 - x[j].
*
* If necessary, the clause should be normalized before a call to this
* routine. */
NPPROW *npp_sat_encode_clause(NPP *npp, int size, NPPLIT lit[])
{ NPPROW *row;
int k;
xassert(size >= 1);
row = npp_add_row(npp);
row->lb = 1.0, row->ub = +DBL_MAX;
for (k = 1; k <= size; k++)
{ xassert(lit[k].col != NULL);
if (lit[k].neg == 0)
npp_add_aij(npp, row, lit[k].col, +1.0);
else if (lit[k].neg == 1)
{ npp_add_aij(npp, row, lit[k].col, -1.0);
row->lb -= 1.0;
}
else
xassert(lit != lit);
}
return row;
}
/***********************************************************************
* npp_sat_encode_geq - encode "not less than" constraint
*
* PURPOSE
*
* This routine translates to CNF the following constraint:
*
* n
* sum 2**(k-1) * y[k] >= b, (1)
* k=1
*
* where y[k] is either a literal (i.e. y[k] = x[k] or y[k] = 1 - x[k])
* or constant false (zero), b is a given lower bound.
*
* ALGORITHM
*
* If b < 0, the constraint is redundant, so assume that b >= 0. Let
*
* n
* b = sum 2**(k-1) b[k], (2)
* k=1
*
* where b[k] is k-th binary digit of b. (Note that if b >= 2**n and
* therefore cannot be represented in the form (2), the constraint (1)
* is infeasible.) In this case the condition (1) is equivalent to the
* following condition:
*
* y[n] y[n-1] ... y[2] y[1] >= b[n] b[n-1] ... b[2] b[1], (3)
*
* where ">=" is understood lexicographically.
*
* Algorithmically the condition (3) can be tested as follows:
*
* for (k = n; k >= 1; k--)
* { if (y[k] < b[k])
* y is less than b;
* if (y[k] > b[k])
* y is greater than b;
* }
* y is equal to b;
*
* Thus, y is less than b iff there exists k, 1 <= k <= n, for which
* the following condition is satisfied:
*
* y[n] = b[n] AND ... AND y[k+1] = b[k+1] AND y[k] < b[k]. (4)
*
* Negating the condition (4) we have that y is not less than b iff for
* all k, 1 <= k <= n, the following condition is satisfied:
*
* y[n] != b[n] OR ... OR y[k+1] != b[k+1] OR y[k] >= b[k]. (5)
*
* Note that if b[k] = 0, the literal y[k] >= b[k] is always true, in
* which case the entire clause (5) is true and can be omitted.
*
* RETURNS
*
* Normally the routine returns zero. However, if the constraint (1) is
* infeasible, the routine returns non-zero. */
int npp_sat_encode_geq(NPP *npp, int n, NPPLIT y[], int rhs)
{ NPPLIT lit[1+NBIT_MAX];
int j, k, size, temp, b[1+NBIT_MAX];
xassert(0 <= n && n <= NBIT_MAX);
/* if the constraint (1) is redundant, do nothing */
if (rhs < 0)
return 0;
/* determine binary digits of b according to (2) */
for (k = 1, temp = rhs; k <= n; k++, temp >>= 1)
b[k] = temp & 1;
if (temp != 0)
{ /* b >= 2**n; the constraint (1) is infeasible */
return 1;
}
/* main transformation loop */
for (k = 1; k <= n; k++)
{ /* build the clause (5) for current k */
size = 0; /* clause size = number of literals */
/* add literal y[k] >= b[k] */
if (b[k] == 0)
{ /* b[k] = 0 -> the literal is true */
goto skip;
}
else if (y[k].col == NULL)
{ /* y[k] = 0, b[k] = 1 -> the literal is false */
xassert(y[k].neg == 0);
}
else
{ /* add literal y[k] = 1 */
lit[++size] = y[k];
}
for (j = k+1; j <= n; j++)
{ /* add literal y[j] != b[j] */
if (y[j].col == NULL)
{ xassert(y[j].neg == 0);
if (b[j] == 0)
{ /* y[j] = 0, b[j] = 0 -> the literal is false */
continue;
}
else
{ /* y[j] = 0, b[j] = 1 -> the literal is true */
goto skip;
}
}
else
{ lit[++size] = y[j];
if (b[j] != 0)
lit[size].neg = 1 - lit[size].neg;
}
}
/* normalize the clause */
size = npp_sat_normalize_clause(npp, size, lit);
if (size < 0)
{ /* the clause is equivalent to the value true */
goto skip;
}
if (size == 0)
{ /* the clause is equivalent to the value false; this means
that the constraint (1) is infeasible */
return 2;
}
/* translate the clause to corresponding cover inequality */
npp_sat_encode_clause(npp, size, lit);
skip: ;
}
return 0;
}
/***********************************************************************
* npp_sat_encode_leq - encode "not greater than" constraint
*
* PURPOSE
*
* This routine translates to CNF the following constraint:
*
* n
* sum 2**(k-1) * y[k] <= b, (1)
* k=1
*
* where y[k] is either a literal (i.e. y[k] = x[k] or y[k] = 1 - x[k])
* or constant false (zero), b is a given upper bound.
*
* ALGORITHM
*
* If b < 0, the constraint is infeasible, so assume that b >= 0. Let
*
* n
* b = sum 2**(k-1) b[k], (2)
* k=1
*
* where b[k] is k-th binary digit of b. (Note that if b >= 2**n and
* therefore cannot be represented in the form (2), the constraint (1)
* is redundant.) In this case the condition (1) is equivalent to the
* following condition:
*
* y[n] y[n-1] ... y[2] y[1] <= b[n] b[n-1] ... b[2] b[1], (3)
*
* where "<=" is understood lexicographically.
*
* Algorithmically the condition (3) can be tested as follows:
*
* for (k = n; k >= 1; k--)
* { if (y[k] < b[k])
* y is less than b;
* if (y[k] > b[k])
* y is greater than b;
* }
* y is equal to b;
*
* Thus, y is greater than b iff there exists k, 1 <= k <= n, for which
* the following condition is satisfied:
*
* y[n] = b[n] AND ... AND y[k+1] = b[k+1] AND y[k] > b[k]. (4)
*
* Negating the condition (4) we have that y is not greater than b iff
* for all k, 1 <= k <= n, the following condition is satisfied:
*
* y[n] != b[n] OR ... OR y[k+1] != b[k+1] OR y[k] <= b[k]. (5)
*
* Note that if b[k] = 1, the literal y[k] <= b[k] is always true, in
* which case the entire clause (5) is true and can be omitted.
*
* RETURNS
*
* Normally the routine returns zero. However, if the constraint (1) is
* infeasible, the routine returns non-zero. */
int npp_sat_encode_leq(NPP *npp, int n, NPPLIT y[], int rhs)
{ NPPLIT lit[1+NBIT_MAX];
int j, k, size, temp, b[1+NBIT_MAX];
xassert(0 <= n && n <= NBIT_MAX);
/* check if the constraint (1) is infeasible */
if (rhs < 0)
return 1;
/* determine binary digits of b according to (2) */
for (k = 1, temp = rhs; k <= n; k++, temp >>= 1)
b[k] = temp & 1;
if (temp != 0)
{ /* b >= 2**n; the constraint (1) is redundant */
return 0;
}
/* main transformation loop */
for (k = 1; k <= n; k++)
{ /* build the clause (5) for current k */
size = 0; /* clause size = number of literals */
/* add literal y[k] <= b[k] */
if (b[k] == 1)
{ /* b[k] = 1 -> the literal is true */
goto skip;
}
else if (y[k].col == NULL)
{ /* y[k] = 0, b[k] = 0 -> the literal is true */
xassert(y[k].neg == 0);
goto skip;
}
else
{ /* add literal y[k] = 0 */
lit[++size] = y[k];
lit[size].neg = 1 - lit[size].neg;
}
for (j = k+1; j <= n; j++)
{ /* add literal y[j] != b[j] */
if (y[j].col == NULL)
{ xassert(y[j].neg == 0);
if (b[j] == 0)
{ /* y[j] = 0, b[j] = 0 -> the literal is false */
continue;
}
else
{ /* y[j] = 0, b[j] = 1 -> the literal is true */
goto skip;
}
}
else
{ lit[++size] = y[j];
if (b[j] != 0)
lit[size].neg = 1 - lit[size].neg;
}
}
/* normalize the clause */
size = npp_sat_normalize_clause(npp, size, lit);
if (size < 0)
{ /* the clause is equivalent to the value true */
goto skip;
}
if (size == 0)
{ /* the clause is equivalent to the value false; this means
that the constraint (1) is infeasible */
return 2;
}
/* translate the clause to corresponding cover inequality */
npp_sat_encode_clause(npp, size, lit);
skip: ;
}
return 0;
}
/***********************************************************************
* npp_sat_encode_row - encode constraint (row) of general type
*
* PURPOSE
*
* This routine translates to CNF the following constraint (row):
*
* L <= sum a[j] x[j] <= U, (1)
* j
*
* where all x[j] are binary variables.
*
* ALGORITHM
*
* First, the routine performs substitution x[j] = t[j] for j in J+
* and x[j] = 1 - t[j] for j in J-, where J+ = { j : a[j] > 0 } and
* J- = { j : a[j] < 0 }. This gives:
*
* L <= sum a[j] t[j] + sum a[j] (1 - t[j]) <= U ==>
* j in J+ j in J-
*
* L' <= sum |a[j]| t[j] <= U', (2)
* j
*
* where
*
* L' = L - sum a[j], U' = U - sum a[j]. (3)
* j in J- j in J-
*
* (Actually only new bounds L' and U' are computed.)
*
* Then the routine translates to CNF the following equality:
*
* n
* sum |a[j]| t[j] = sum 2**(k-1) * y[k], (4)
* j k=1
*
* where y[k] is either some t[j] or a new literal or a constant zero
* (see the routine npp_sat_encode_sum_ax).
*
* Finally, the routine translates to CNF the following conditions:
*
* n
* sum 2**(k-1) * y[k] >= L' (5)
* k=1
*
* and
*
* n
* sum 2**(k-1) * y[k] <= U' (6)
* k=1
*
* (see the routines npp_sat_encode_geq and npp_sat_encode_leq).
*
* All resulting clauses are encoded as cover inequalities and included
* into the transformed problem.
*
* Note that on exit the routine removes the specified constraint (row)
* from the original problem.
*
* RETURNS
*
* The routine returns one of the following codes:
*
* 0 - translation was successful;
* 1 - constraint (1) was found infeasible;
* 2 - integer arithmetic error occured. */
int npp_sat_encode_row(NPP *npp, NPPROW *row)
{ NPPAIJ *aij;
NPPLIT y[1+NBIT_MAX];
int n, rhs;
double lb, ub;
/* the row should not be free */
xassert(!(row->lb == -DBL_MAX && row->ub == +DBL_MAX));
/* compute new bounds L' and U' (3) */
lb = row->lb;
ub = row->ub;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
{ if (aij->val < 0.0)
{ if (lb != -DBL_MAX)
lb -= aij->val;
if (ub != -DBL_MAX)
ub -= aij->val;
}
}
/* encode the equality (4) */
n = npp_sat_encode_sum_ax(npp, row, y);
if (n < 0)
return 2; /* integer arithmetic error */
/* encode the condition (5) */
if (lb != -DBL_MAX)
{ rhs = (int)lb;
if ((double)rhs != lb)
return 2; /* integer arithmetic error */
if (npp_sat_encode_geq(npp, n, y, rhs) != 0)
return 1; /* original constraint is infeasible */
}
/* encode the condition (6) */
if (ub != +DBL_MAX)
{ rhs = (int)ub;
if ((double)rhs != ub)
return 2; /* integer arithmetic error */
if (npp_sat_encode_leq(npp, n, y, rhs) != 0)
return 1; /* original constraint is infeasible */
}
/* remove the specified row from the problem */
npp_del_row(npp, row);
return 0;
}
/***********************************************************************
* npp_sat_encode_prob - encode 0-1 feasibility problem
*
* This routine translates the specified 0-1 feasibility problem to an
* equivalent SAT-CNF problem.
*
* N.B. Currently this is a very crude implementation.
*
* RETURNS
*
* 0 success;
*
* GLP_ENOPFS primal/integer infeasibility detected;
*
* GLP_ERANGE integer overflow occured. */
int npp_sat_encode_prob(NPP *npp)
{ NPPROW *row, *next_row, *prev_row;
NPPCOL *col, *next_col;
int cover = 0, pack = 0, partn = 0, ret;
/* process and remove free rows */
for (row = npp->r_head; row != NULL; row = next_row)
{ next_row = row->next;
if (row->lb == -DBL_MAX && row->ub == +DBL_MAX)
npp_sat_free_row(npp, row);
}
/* process and remove fixed columns */
for (col = npp->c_head; col != NULL; col = next_col)
{ next_col = col->next;
if (col->lb == col->ub)
xassert(npp_sat_fixed_col(npp, col) == 0);
}
/* only binary variables should remain */
for (col = npp->c_head; col != NULL; col = col->next)
xassert(col->is_int && col->lb == 0.0 && col->ub == 1.0);
/* new rows may be added to the end of the row list, so we walk
from the end to beginning of the list */
for (row = npp->r_tail; row != NULL; row = prev_row)
{ prev_row = row->prev;
/* process special cases */
ret = npp_sat_is_cover_ineq(npp, row);
if (ret != 0)
{ /* row is covering inequality */
cover++;
/* since it already encodes a clause, just transform it to
canonical form */
if (ret == 2)
{ xassert(npp_sat_reverse_row(npp, row) == 0);
ret = npp_sat_is_cover_ineq(npp, row);
}
xassert(ret == 1);
continue;
}
ret = npp_sat_is_partn_eq(npp, row);
if (ret != 0)
{ /* row is partitioning equality */
NPPROW *cov;
NPPAIJ *aij;
partn++;
/* transform it to canonical form */
if (ret == 2)
{ xassert(npp_sat_reverse_row(npp, row) == 0);
ret = npp_sat_is_partn_eq(npp, row);
}
xassert(ret == 1);
/* and split it into covering and packing inequalities,
both in canonical forms */
cov = npp_add_row(npp);
cov->lb = row->lb, cov->ub = +DBL_MAX;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
npp_add_aij(npp, cov, aij->col, aij->val);
xassert(npp_sat_is_cover_ineq(npp, cov) == 1);
/* the cover inequality already encodes a clause and do
not need any further processing */
row->lb = -DBL_MAX;
xassert(npp_sat_is_pack_ineq(npp, row) == 1);
/* the packing inequality will be processed below */
pack--;
}
ret = npp_sat_is_pack_ineq(npp, row);
if (ret != 0)
{ /* row is packing inequality */
NPPROW *rrr;
int nlit, desired_nlit = 4;
pack++;
/* transform it to canonical form */
if (ret == 2)
{ xassert(npp_sat_reverse_row(npp, row) == 0);
ret = npp_sat_is_pack_ineq(npp, row);
}
xassert(ret == 1);
/* process the packing inequality */
for (;;)
{ /* determine the number of literals in the remaining
inequality */
nlit = npp_row_nnz(npp, row);
if (nlit <= desired_nlit)
break;
/* split the current inequality into one having not more
than desired_nlit literals and remaining one */
rrr = npp_sat_split_pack(npp, row, desired_nlit-1);
/* translate the former inequality to CNF and remove it
from the original problem */
npp_sat_encode_pack(npp, rrr);
}
/* translate the remaining inequality to CNF and remove it
from the original problem */
npp_sat_encode_pack(npp, row);
continue;
}
/* translate row of general type to CNF and remove it from the
original problem */
ret = npp_sat_encode_row(npp, row);
if (ret == 0)
;
else if (ret == 1)
ret = GLP_ENOPFS;
else if (ret == 2)
ret = GLP_ERANGE;
else
xassert(ret != ret);
if (ret != 0)
goto done;
}
ret = 0;
if (cover != 0)
xprintf("%d covering inequalities\n", cover);
if (pack != 0)
xprintf("%d packing inequalities\n", pack);
if (partn != 0)
xprintf("%d partitioning equalities\n", partn);
done: return ret;
}
/* eof */