You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

272 lines
9.0 KiB

/* glpapi14.c (processing models in GNU MathProg language) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "draft.h"
#include "glpmpl.h"
#include "prob.h"
glp_tran *glp_mpl_alloc_wksp(void)
{ /* allocate the MathProg translator workspace */
glp_tran *tran;
tran = mpl_initialize();
return tran;
}
#if 1 /* 08/XII-2009 */
void _glp_mpl_init_rand(glp_tran *tran, int seed)
{ if (tran->phase != 0)
xerror("glp_mpl_init_rand: invalid call sequence\n");
rng_init_rand(tran->rand, seed);
return;
}
#endif
int glp_mpl_read_model(glp_tran *tran, const char *fname, int skip)
{ /* read and translate model section */
int ret;
if (tran->phase != 0)
xerror("glp_mpl_read_model: invalid call sequence\n");
ret = mpl_read_model(tran, (char *)fname, skip);
if (ret == 1 || ret == 2)
ret = 0;
else if (ret == 4)
ret = 1;
else
xassert(ret != ret);
return ret;
}
int glp_mpl_read_data(glp_tran *tran, const char *fname)
{ /* read and translate data section */
int ret;
if (!(tran->phase == 1 || tran->phase == 2))
xerror("glp_mpl_read_data: invalid call sequence\n");
ret = mpl_read_data(tran, (char *)fname);
if (ret == 2)
ret = 0;
else if (ret == 4)
ret = 1;
else
xassert(ret != ret);
return ret;
}
int glp_mpl_generate(glp_tran *tran, const char *fname)
{ /* generate the model */
int ret;
if (!(tran->phase == 1 || tran->phase == 2))
xerror("glp_mpl_generate: invalid call sequence\n");
ret = mpl_generate(tran, (char *)fname);
if (ret == 3)
ret = 0;
else if (ret == 4)
ret = 1;
return ret;
}
void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob)
{ /* build LP/MIP problem instance from the model */
int m, n, i, j, t, kind, type, len, *ind;
double lb, ub, *val;
if (tran->phase != 3)
xerror("glp_mpl_build_prob: invalid call sequence\n");
/* erase the problem object */
glp_erase_prob(prob);
/* set problem name */
glp_set_prob_name(prob, mpl_get_prob_name(tran));
/* build rows (constraints) */
m = mpl_get_num_rows(tran);
if (m > 0)
glp_add_rows(prob, m);
for (i = 1; i <= m; i++)
{ /* set row name */
glp_set_row_name(prob, i, mpl_get_row_name(tran, i));
/* set row bounds */
type = mpl_get_row_bnds(tran, i, &lb, &ub);
switch (type)
{ case MPL_FR: type = GLP_FR; break;
case MPL_LO: type = GLP_LO; break;
case MPL_UP: type = GLP_UP; break;
case MPL_DB: type = GLP_DB; break;
case MPL_FX: type = GLP_FX; break;
default: xassert(type != type);
}
if (type == GLP_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb)))
{ type = GLP_FX;
if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub;
}
glp_set_row_bnds(prob, i, type, lb, ub);
/* warn about non-zero constant term */
if (mpl_get_row_c0(tran, i) != 0.0)
xprintf("glp_mpl_build_prob: row %s; constant term %.12g ig"
"nored\n",
mpl_get_row_name(tran, i), mpl_get_row_c0(tran, i));
}
/* build columns (variables) */
n = mpl_get_num_cols(tran);
if (n > 0)
glp_add_cols(prob, n);
for (j = 1; j <= n; j++)
{ /* set column name */
glp_set_col_name(prob, j, mpl_get_col_name(tran, j));
/* set column kind */
kind = mpl_get_col_kind(tran, j);
switch (kind)
{ case MPL_NUM:
break;
case MPL_INT:
case MPL_BIN:
glp_set_col_kind(prob, j, GLP_IV);
break;
default:
xassert(kind != kind);
}
/* set column bounds */
type = mpl_get_col_bnds(tran, j, &lb, &ub);
switch (type)
{ case MPL_FR: type = GLP_FR; break;
case MPL_LO: type = GLP_LO; break;
case MPL_UP: type = GLP_UP; break;
case MPL_DB: type = GLP_DB; break;
case MPL_FX: type = GLP_FX; break;
default: xassert(type != type);
}
if (kind == MPL_BIN)
{ if (type == GLP_FR || type == GLP_UP || lb < 0.0) lb = 0.0;
if (type == GLP_FR || type == GLP_LO || ub > 1.0) ub = 1.0;
type = GLP_DB;
}
if (type == GLP_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb)))
{ type = GLP_FX;
if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub;
}
glp_set_col_bnds(prob, j, type, lb, ub);
}
/* load the constraint matrix */
ind = xcalloc(1+n, sizeof(int));
val = xcalloc(1+n, sizeof(double));
for (i = 1; i <= m; i++)
{ len = mpl_get_mat_row(tran, i, ind, val);
glp_set_mat_row(prob, i, len, ind, val);
}
/* build objective function (the first objective is used) */
for (i = 1; i <= m; i++)
{ kind = mpl_get_row_kind(tran, i);
if (kind == MPL_MIN || kind == MPL_MAX)
{ /* set objective name */
glp_set_obj_name(prob, mpl_get_row_name(tran, i));
/* set optimization direction */
glp_set_obj_dir(prob, kind == MPL_MIN ? GLP_MIN : GLP_MAX);
/* set constant term */
glp_set_obj_coef(prob, 0, mpl_get_row_c0(tran, i));
/* set objective coefficients */
len = mpl_get_mat_row(tran, i, ind, val);
for (t = 1; t <= len; t++)
glp_set_obj_coef(prob, ind[t], val[t]);
break;
}
}
/* free working arrays */
xfree(ind);
xfree(val);
return;
}
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol)
{ /* postsolve the model */
int i, j, m, n, stat, ret;
double prim, dual;
if (!(tran->phase == 3 && !tran->flag_p))
xerror("glp_mpl_postsolve: invalid call sequence\n");
if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP))
xerror("glp_mpl_postsolve: sol = %d; invalid parameter\n",
sol);
m = mpl_get_num_rows(tran);
n = mpl_get_num_cols(tran);
if (!(m == glp_get_num_rows(prob) &&
n == glp_get_num_cols(prob)))
xerror("glp_mpl_postsolve: wrong problem object\n");
if (!mpl_has_solve_stmt(tran))
{ ret = 0;
goto done;
}
for (i = 1; i <= m; i++)
{ if (sol == GLP_SOL)
{ stat = glp_get_row_stat(prob, i);
prim = glp_get_row_prim(prob, i);
dual = glp_get_row_dual(prob, i);
}
else if (sol == GLP_IPT)
{ stat = 0;
prim = glp_ipt_row_prim(prob, i);
dual = glp_ipt_row_dual(prob, i);
}
else if (sol == GLP_MIP)
{ stat = 0;
prim = glp_mip_row_val(prob, i);
dual = 0.0;
}
else
xassert(sol != sol);
if (fabs(prim) < 1e-9) prim = 0.0;
if (fabs(dual) < 1e-9) dual = 0.0;
mpl_put_row_soln(tran, i, stat, prim, dual);
}
for (j = 1; j <= n; j++)
{ if (sol == GLP_SOL)
{ stat = glp_get_col_stat(prob, j);
prim = glp_get_col_prim(prob, j);
dual = glp_get_col_dual(prob, j);
}
else if (sol == GLP_IPT)
{ stat = 0;
prim = glp_ipt_col_prim(prob, j);
dual = glp_ipt_col_dual(prob, j);
}
else if (sol == GLP_MIP)
{ stat = 0;
prim = glp_mip_col_val(prob, j);
dual = 0.0;
}
else
xassert(sol != sol);
if (fabs(prim) < 1e-9) prim = 0.0;
if (fabs(dual) < 1e-9) dual = 0.0;
mpl_put_col_soln(tran, j, stat, prim, dual);
}
ret = mpl_postsolve(tran);
if (ret == 3)
ret = 0;
else if (ret == 4)
ret = 1;
done: return ret;
}
void glp_mpl_free_wksp(glp_tran *tran)
{ /* free the MathProg translator workspace */
mpl_terminate(tran);
return;
}
/* eof */