You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2237 lines
79 KiB

/* glpapi12.c (basis factorization and simplex tableau routines) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "draft.h"
#include "env.h"
#include "prob.h"
/***********************************************************************
* NAME
*
* glp_bf_exists - check if the basis factorization exists
*
* SYNOPSIS
*
* int glp_bf_exists(glp_prob *lp);
*
* RETURNS
*
* If the basis factorization for the current basis associated with
* the specified problem object exists and therefore is available for
* computations, the routine glp_bf_exists returns non-zero. Otherwise
* the routine returns zero. */
int glp_bf_exists(glp_prob *lp)
{ int ret;
ret = (lp->m == 0 || lp->valid);
return ret;
}
/***********************************************************************
* NAME
*
* glp_factorize - compute the basis factorization
*
* SYNOPSIS
*
* int glp_factorize(glp_prob *lp);
*
* DESCRIPTION
*
* The routine glp_factorize computes the basis factorization for the
* current basis associated with the specified problem object.
*
* RETURNS
*
* 0 The basis factorization has been successfully computed.
*
* GLP_EBADB
* The basis matrix is invalid, i.e. the number of basic (auxiliary
* and structural) variables differs from the number of rows in the
* problem object.
*
* GLP_ESING
* The basis matrix is singular within the working precision.
*
* GLP_ECOND
* The basis matrix is ill-conditioned. */
static int b_col(void *info, int j, int ind[], double val[])
{ glp_prob *lp = info;
int m = lp->m;
GLPAIJ *aij;
int k, len;
xassert(1 <= j && j <= m);
/* determine the ordinal number of basic auxiliary or structural
variable x[k] corresponding to basic variable xB[j] */
k = lp->head[j];
/* build j-th column of the basic matrix, which is k-th column of
the scaled augmented matrix (I | -R*A*S) */
if (k <= m)
{ /* x[k] is auxiliary variable */
len = 1;
ind[1] = k;
val[1] = 1.0;
}
else
{ /* x[k] is structural variable */
len = 0;
for (aij = lp->col[k-m]->ptr; aij != NULL; aij = aij->c_next)
{ len++;
ind[len] = aij->row->i;
val[len] = - aij->row->rii * aij->val * aij->col->sjj;
}
}
return len;
}
static void copy_bfcp(glp_prob *lp);
int glp_factorize(glp_prob *lp)
{ int m = lp->m;
int n = lp->n;
GLPROW **row = lp->row;
GLPCOL **col = lp->col;
int *head = lp->head;
int j, k, stat, ret;
/* invalidate the basis factorization */
lp->valid = 0;
/* build the basis header */
j = 0;
for (k = 1; k <= m+n; k++)
{ if (k <= m)
{ stat = row[k]->stat;
row[k]->bind = 0;
}
else
{ stat = col[k-m]->stat;
col[k-m]->bind = 0;
}
if (stat == GLP_BS)
{ j++;
if (j > m)
{ /* too many basic variables */
ret = GLP_EBADB;
goto fini;
}
head[j] = k;
if (k <= m)
row[k]->bind = j;
else
col[k-m]->bind = j;
}
}
if (j < m)
{ /* too few basic variables */
ret = GLP_EBADB;
goto fini;
}
/* try to factorize the basis matrix */
if (m > 0)
{ if (lp->bfd == NULL)
{ lp->bfd = bfd_create_it();
copy_bfcp(lp);
}
switch (bfd_factorize(lp->bfd, m, lp->head, b_col, lp))
{ case 0:
/* ok */
break;
case BFD_ESING:
/* singular matrix */
ret = GLP_ESING;
goto fini;
case BFD_ECOND:
/* ill-conditioned matrix */
ret = GLP_ECOND;
goto fini;
default:
xassert(lp != lp);
}
lp->valid = 1;
}
/* factorization successful */
ret = 0;
fini: /* bring the return code to the calling program */
return ret;
}
/***********************************************************************
* NAME
*
* glp_bf_updated - check if the basis factorization has been updated
*
* SYNOPSIS
*
* int glp_bf_updated(glp_prob *lp);
*
* RETURNS
*
* If the basis factorization has been just computed from scratch, the
* routine glp_bf_updated returns zero. Otherwise, if the factorization
* has been updated one or more times, the routine returns non-zero. */
int glp_bf_updated(glp_prob *lp)
{ int cnt;
if (!(lp->m == 0 || lp->valid))
xerror("glp_bf_update: basis factorization does not exist\n");
#if 0 /* 15/XI-2009 */
cnt = (lp->m == 0 ? 0 : lp->bfd->upd_cnt);
#else
cnt = (lp->m == 0 ? 0 : bfd_get_count(lp->bfd));
#endif
return cnt;
}
/***********************************************************************
* NAME
*
* glp_get_bfcp - retrieve basis factorization control parameters
*
* SYNOPSIS
*
* void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm);
*
* DESCRIPTION
*
* The routine glp_get_bfcp retrieves control parameters, which are
* used on computing and updating the basis factorization associated
* with the specified problem object.
*
* Current values of control parameters are stored by the routine in
* a glp_bfcp structure, which the parameter parm points to. */
void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm)
{ glp_bfcp *bfcp = lp->bfcp;
if (bfcp == NULL)
{ parm->type = GLP_BF_FT;
parm->lu_size = 0;
parm->piv_tol = 0.10;
parm->piv_lim = 4;
parm->suhl = GLP_ON;
parm->eps_tol = 1e-15;
parm->max_gro = 1e+10;
parm->nfs_max = 100;
parm->upd_tol = 1e-6;
parm->nrs_max = 100;
parm->rs_size = 0;
}
else
memcpy(parm, bfcp, sizeof(glp_bfcp));
return;
}
/***********************************************************************
* NAME
*
* glp_set_bfcp - change basis factorization control parameters
*
* SYNOPSIS
*
* void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm);
*
* DESCRIPTION
*
* The routine glp_set_bfcp changes control parameters, which are used
* by internal GLPK routines in computing and updating the basis
* factorization associated with the specified problem object.
*
* New values of the control parameters should be passed in a structure
* glp_bfcp, which the parameter parm points to.
*
* The parameter parm can be specified as NULL, in which case all
* control parameters are reset to their default values. */
#if 0 /* 15/XI-2009 */
static void copy_bfcp(glp_prob *lp)
{ glp_bfcp _parm, *parm = &_parm;
BFD *bfd = lp->bfd;
glp_get_bfcp(lp, parm);
xassert(bfd != NULL);
bfd->type = parm->type;
bfd->lu_size = parm->lu_size;
bfd->piv_tol = parm->piv_tol;
bfd->piv_lim = parm->piv_lim;
bfd->suhl = parm->suhl;
bfd->eps_tol = parm->eps_tol;
bfd->max_gro = parm->max_gro;
bfd->nfs_max = parm->nfs_max;
bfd->upd_tol = parm->upd_tol;
bfd->nrs_max = parm->nrs_max;
bfd->rs_size = parm->rs_size;
return;
}
#else
static void copy_bfcp(glp_prob *lp)
{ glp_bfcp _parm, *parm = &_parm;
glp_get_bfcp(lp, parm);
bfd_set_parm(lp->bfd, parm);
return;
}
#endif
void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm)
{ glp_bfcp *bfcp = lp->bfcp;
if (parm == NULL)
{ /* reset to default values */
if (bfcp != NULL)
xfree(bfcp), lp->bfcp = NULL;
}
else
{ /* set to specified values */
if (bfcp == NULL)
bfcp = lp->bfcp = xmalloc(sizeof(glp_bfcp));
memcpy(bfcp, parm, sizeof(glp_bfcp));
if (!(bfcp->type == GLP_BF_FT || bfcp->type == GLP_BF_BG ||
bfcp->type == GLP_BF_GR))
xerror("glp_set_bfcp: type = %d; invalid parameter\n",
bfcp->type);
if (bfcp->lu_size < 0)
xerror("glp_set_bfcp: lu_size = %d; invalid parameter\n",
bfcp->lu_size);
if (!(0.0 < bfcp->piv_tol && bfcp->piv_tol < 1.0))
xerror("glp_set_bfcp: piv_tol = %g; invalid parameter\n",
bfcp->piv_tol);
if (bfcp->piv_lim < 1)
xerror("glp_set_bfcp: piv_lim = %d; invalid parameter\n",
bfcp->piv_lim);
if (!(bfcp->suhl == GLP_ON || bfcp->suhl == GLP_OFF))
xerror("glp_set_bfcp: suhl = %d; invalid parameter\n",
bfcp->suhl);
if (!(0.0 <= bfcp->eps_tol && bfcp->eps_tol <= 1e-6))
xerror("glp_set_bfcp: eps_tol = %g; invalid parameter\n",
bfcp->eps_tol);
if (bfcp->max_gro < 1.0)
xerror("glp_set_bfcp: max_gro = %g; invalid parameter\n",
bfcp->max_gro);
if (!(1 <= bfcp->nfs_max && bfcp->nfs_max <= 32767))
xerror("glp_set_bfcp: nfs_max = %d; invalid parameter\n",
bfcp->nfs_max);
if (!(0.0 < bfcp->upd_tol && bfcp->upd_tol < 1.0))
xerror("glp_set_bfcp: upd_tol = %g; invalid parameter\n",
bfcp->upd_tol);
if (!(1 <= bfcp->nrs_max && bfcp->nrs_max <= 32767))
xerror("glp_set_bfcp: nrs_max = %d; invalid parameter\n",
bfcp->nrs_max);
if (bfcp->rs_size < 0)
xerror("glp_set_bfcp: rs_size = %d; invalid parameter\n",
bfcp->nrs_max);
if (bfcp->rs_size == 0)
bfcp->rs_size = 20 * bfcp->nrs_max;
}
if (lp->bfd != NULL) copy_bfcp(lp);
return;
}
/***********************************************************************
* NAME
*
* glp_get_bhead - retrieve the basis header information
*
* SYNOPSIS
*
* int glp_get_bhead(glp_prob *lp, int k);
*
* DESCRIPTION
*
* The routine glp_get_bhead returns the basis header information for
* the current basis associated with the specified problem object.
*
* RETURNS
*
* If xB[k], 1 <= k <= m, is i-th auxiliary variable (1 <= i <= m), the
* routine returns i. Otherwise, if xB[k] is j-th structural variable
* (1 <= j <= n), the routine returns m+j. Here m is the number of rows
* and n is the number of columns in the problem object. */
int glp_get_bhead(glp_prob *lp, int k)
{ if (!(lp->m == 0 || lp->valid))
xerror("glp_get_bhead: basis factorization does not exist\n");
if (!(1 <= k && k <= lp->m))
xerror("glp_get_bhead: k = %d; index out of range\n", k);
return lp->head[k];
}
/***********************************************************************
* NAME
*
* glp_get_row_bind - retrieve row index in the basis header
*
* SYNOPSIS
*
* int glp_get_row_bind(glp_prob *lp, int i);
*
* RETURNS
*
* The routine glp_get_row_bind returns the index k of basic variable
* xB[k], 1 <= k <= m, which is i-th auxiliary variable, 1 <= i <= m,
* in the current basis associated with the specified problem object,
* where m is the number of rows. However, if i-th auxiliary variable
* is non-basic, the routine returns zero. */
int glp_get_row_bind(glp_prob *lp, int i)
{ if (!(lp->m == 0 || lp->valid))
xerror("glp_get_row_bind: basis factorization does not exist\n"
);
if (!(1 <= i && i <= lp->m))
xerror("glp_get_row_bind: i = %d; row number out of range\n",
i);
return lp->row[i]->bind;
}
/***********************************************************************
* NAME
*
* glp_get_col_bind - retrieve column index in the basis header
*
* SYNOPSIS
*
* int glp_get_col_bind(glp_prob *lp, int j);
*
* RETURNS
*
* The routine glp_get_col_bind returns the index k of basic variable
* xB[k], 1 <= k <= m, which is j-th structural variable, 1 <= j <= n,
* in the current basis associated with the specified problem object,
* where m is the number of rows, n is the number of columns. However,
* if j-th structural variable is non-basic, the routine returns zero.*/
int glp_get_col_bind(glp_prob *lp, int j)
{ if (!(lp->m == 0 || lp->valid))
xerror("glp_get_col_bind: basis factorization does not exist\n"
);
if (!(1 <= j && j <= lp->n))
xerror("glp_get_col_bind: j = %d; column number out of range\n"
, j);
return lp->col[j]->bind;
}
/***********************************************************************
* NAME
*
* glp_ftran - perform forward transformation (solve system B*x = b)
*
* SYNOPSIS
*
* void glp_ftran(glp_prob *lp, double x[]);
*
* DESCRIPTION
*
* The routine glp_ftran performs forward transformation, i.e. solves
* the system B*x = b, where B is the basis matrix corresponding to the
* current basis for the specified problem object, x is the vector of
* unknowns to be computed, b is the vector of right-hand sides.
*
* On entry elements of the vector b should be stored in dense format
* in locations x[1], ..., x[m], where m is the number of rows. On exit
* the routine stores elements of the vector x in the same locations.
*
* SCALING/UNSCALING
*
* Let A~ = (I | -A) is the augmented constraint matrix of the original
* (unscaled) problem. In the scaled LP problem instead the matrix A the
* scaled matrix A" = R*A*S is actually used, so
*
* A~" = (I | A") = (I | R*A*S) = (R*I*inv(R) | R*A*S) =
* (1)
* = R*(I | A)*S~ = R*A~*S~,
*
* is the scaled augmented constraint matrix, where R and S are diagonal
* scaling matrices used to scale rows and columns of the matrix A, and
*
* S~ = diag(inv(R) | S) (2)
*
* is an augmented diagonal scaling matrix.
*
* By definition:
*
* A~ = (B | N), (3)
*
* where B is the basic matrix, which consists of basic columns of the
* augmented constraint matrix A~, and N is a matrix, which consists of
* non-basic columns of A~. From (1) it follows that:
*
* A~" = (B" | N") = (R*B*SB | R*N*SN), (4)
*
* where SB and SN are parts of the augmented scaling matrix S~, which
* correspond to basic and non-basic variables, respectively. Therefore
*
* B" = R*B*SB, (5)
*
* which is the scaled basis matrix. */
void glp_ftran(glp_prob *lp, double x[])
{ int m = lp->m;
GLPROW **row = lp->row;
GLPCOL **col = lp->col;
int i, k;
/* B*x = b ===> (R*B*SB)*(inv(SB)*x) = R*b ===>
B"*x" = b", where b" = R*b, x = SB*x" */
if (!(m == 0 || lp->valid))
xerror("glp_ftran: basis factorization does not exist\n");
/* b" := R*b */
for (i = 1; i <= m; i++)
x[i] *= row[i]->rii;
/* x" := inv(B")*b" */
if (m > 0) bfd_ftran(lp->bfd, x);
/* x := SB*x" */
for (i = 1; i <= m; i++)
{ k = lp->head[i];
if (k <= m)
x[i] /= row[k]->rii;
else
x[i] *= col[k-m]->sjj;
}
return;
}
/***********************************************************************
* NAME
*
* glp_btran - perform backward transformation (solve system B'*x = b)
*
* SYNOPSIS
*
* void glp_btran(glp_prob *lp, double x[]);
*
* DESCRIPTION
*
* The routine glp_btran performs backward transformation, i.e. solves
* the system B'*x = b, where B' is a matrix transposed to the basis
* matrix corresponding to the current basis for the specified problem
* problem object, x is the vector of unknowns to be computed, b is the
* vector of right-hand sides.
*
* On entry elements of the vector b should be stored in dense format
* in locations x[1], ..., x[m], where m is the number of rows. On exit
* the routine stores elements of the vector x in the same locations.
*
* SCALING/UNSCALING
*
* See comments to the routine glp_ftran. */
void glp_btran(glp_prob *lp, double x[])
{ int m = lp->m;
GLPROW **row = lp->row;
GLPCOL **col = lp->col;
int i, k;
/* B'*x = b ===> (SB*B'*R)*(inv(R)*x) = SB*b ===>
(B")'*x" = b", where b" = SB*b, x = R*x" */
if (!(m == 0 || lp->valid))
xerror("glp_btran: basis factorization does not exist\n");
/* b" := SB*b */
for (i = 1; i <= m; i++)
{ k = lp->head[i];
if (k <= m)
x[i] /= row[k]->rii;
else
x[i] *= col[k-m]->sjj;
}
/* x" := inv[(B")']*b" */
if (m > 0) bfd_btran(lp->bfd, x);
/* x := R*x" */
for (i = 1; i <= m; i++)
x[i] *= row[i]->rii;
return;
}
/***********************************************************************
* NAME
*
* glp_warm_up - "warm up" LP basis
*
* SYNOPSIS
*
* int glp_warm_up(glp_prob *P);
*
* DESCRIPTION
*
* The routine glp_warm_up "warms up" the LP basis for the specified
* problem object using current statuses assigned to rows and columns
* (that is, to auxiliary and structural variables).
*
* This operation includes computing factorization of the basis matrix
* (if it does not exist), computing primal and dual components of basic
* solution, and determining the solution status.
*
* RETURNS
*
* 0 The operation has been successfully performed.
*
* GLP_EBADB
* The basis matrix is invalid, i.e. the number of basic (auxiliary
* and structural) variables differs from the number of rows in the
* problem object.
*
* GLP_ESING
* The basis matrix is singular within the working precision.
*
* GLP_ECOND
* The basis matrix is ill-conditioned. */
int glp_warm_up(glp_prob *P)
{ GLPROW *row;
GLPCOL *col;
GLPAIJ *aij;
int i, j, type, stat, ret;
double eps, temp, *work;
/* invalidate basic solution */
P->pbs_stat = P->dbs_stat = GLP_UNDEF;
P->obj_val = 0.0;
P->some = 0;
for (i = 1; i <= P->m; i++)
{ row = P->row[i];
row->prim = row->dual = 0.0;
}
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
col->prim = col->dual = 0.0;
}
/* compute the basis factorization, if necessary */
if (!glp_bf_exists(P))
{ ret = glp_factorize(P);
if (ret != 0) goto done;
}
/* allocate working array */
work = xcalloc(1+P->m, sizeof(double));
/* determine and store values of non-basic variables, compute
vector (- N * xN) */
for (i = 1; i <= P->m; i++)
work[i] = 0.0;
for (i = 1; i <= P->m; i++)
{ row = P->row[i];
if (row->stat == GLP_BS)
continue;
else if (row->stat == GLP_NL)
row->prim = row->lb;
else if (row->stat == GLP_NU)
row->prim = row->ub;
else if (row->stat == GLP_NF)
row->prim = 0.0;
else if (row->stat == GLP_NS)
row->prim = row->lb;
else
xassert(row != row);
/* N[j] is i-th column of matrix (I|-A) */
work[i] -= row->prim;
}
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
if (col->stat == GLP_BS)
continue;
else if (col->stat == GLP_NL)
col->prim = col->lb;
else if (col->stat == GLP_NU)
col->prim = col->ub;
else if (col->stat == GLP_NF)
col->prim = 0.0;
else if (col->stat == GLP_NS)
col->prim = col->lb;
else
xassert(col != col);
/* N[j] is (m+j)-th column of matrix (I|-A) */
if (col->prim != 0.0)
{ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
work[aij->row->i] += aij->val * col->prim;
}
}
/* compute vector of basic variables xB = - inv(B) * N * xN */
glp_ftran(P, work);
/* store values of basic variables, check primal feasibility */
P->pbs_stat = GLP_FEAS;
for (i = 1; i <= P->m; i++)
{ row = P->row[i];
if (row->stat != GLP_BS)
continue;
row->prim = work[row->bind];
type = row->type;
if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
{ eps = 1e-6 + 1e-9 * fabs(row->lb);
if (row->prim < row->lb - eps)
P->pbs_stat = GLP_INFEAS;
}
if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
{ eps = 1e-6 + 1e-9 * fabs(row->ub);
if (row->prim > row->ub + eps)
P->pbs_stat = GLP_INFEAS;
}
}
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
if (col->stat != GLP_BS)
continue;
col->prim = work[col->bind];
type = col->type;
if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
{ eps = 1e-6 + 1e-9 * fabs(col->lb);
if (col->prim < col->lb - eps)
P->pbs_stat = GLP_INFEAS;
}
if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
{ eps = 1e-6 + 1e-9 * fabs(col->ub);
if (col->prim > col->ub + eps)
P->pbs_stat = GLP_INFEAS;
}
}
/* compute value of the objective function */
P->obj_val = P->c0;
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
P->obj_val += col->coef * col->prim;
}
/* build vector cB of objective coefficients at basic variables */
for (i = 1; i <= P->m; i++)
work[i] = 0.0;
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
if (col->stat == GLP_BS)
work[col->bind] = col->coef;
}
/* compute vector of simplex multipliers pi = inv(B') * cB */
glp_btran(P, work);
/* compute and store reduced costs of non-basic variables d[j] =
c[j] - N'[j] * pi, check dual feasibility */
P->dbs_stat = GLP_FEAS;
for (i = 1; i <= P->m; i++)
{ row = P->row[i];
if (row->stat == GLP_BS)
{ row->dual = 0.0;
continue;
}
/* N[j] is i-th column of matrix (I|-A) */
row->dual = - work[i];
#if 0 /* 07/III-2013 */
type = row->type;
temp = (P->dir == GLP_MIN ? + row->dual : - row->dual);
if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 ||
(type == GLP_FR || type == GLP_UP) && temp > +1e-5)
P->dbs_stat = GLP_INFEAS;
#else
stat = row->stat;
temp = (P->dir == GLP_MIN ? + row->dual : - row->dual);
if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 ||
(stat == GLP_NF || stat == GLP_NU) && temp > +1e-5)
P->dbs_stat = GLP_INFEAS;
#endif
}
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
if (col->stat == GLP_BS)
{ col->dual = 0.0;
continue;
}
/* N[j] is (m+j)-th column of matrix (I|-A) */
col->dual = col->coef;
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
col->dual += aij->val * work[aij->row->i];
#if 0 /* 07/III-2013 */
type = col->type;
temp = (P->dir == GLP_MIN ? + col->dual : - col->dual);
if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 ||
(type == GLP_FR || type == GLP_UP) && temp > +1e-5)
P->dbs_stat = GLP_INFEAS;
#else
stat = col->stat;
temp = (P->dir == GLP_MIN ? + col->dual : - col->dual);
if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 ||
(stat == GLP_NF || stat == GLP_NU) && temp > +1e-5)
P->dbs_stat = GLP_INFEAS;
#endif
}
/* free working array */
xfree(work);
ret = 0;
done: return ret;
}
/***********************************************************************
* NAME
*
* glp_eval_tab_row - compute row of the simplex tableau
*
* SYNOPSIS
*
* int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[]);
*
* DESCRIPTION
*
* The routine glp_eval_tab_row computes a row of the current simplex
* tableau for the basic variable, which is specified by the number k:
* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n,
* x[k] is (k-m)-th structural variable, where m is number of rows, and
* n is number of columns. The current basis must be available.
*
* The routine stores column indices and numerical values of non-zero
* elements of the computed row using sparse format to the locations
* ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where
* 0 <= len <= n is number of non-zeros returned on exit.
*
* Element indices stored in the array ind have the same sense as the
* index k, i.e. indices 1 to m denote auxiliary variables and indices
* m+1 to m+n denote structural ones (all these variables are obviously
* non-basic by definition).
*
* The computed row shows how the specified basic variable x[k] = xB[i]
* depends on non-basic variables:
*
* xB[i] = alfa[i,1]*xN[1] + alfa[i,2]*xN[2] + ... + alfa[i,n]*xN[n],
*
* where alfa[i,j] are elements of the simplex table row, xN[j] are
* non-basic (auxiliary and structural) variables.
*
* RETURNS
*
* The routine returns number of non-zero elements in the simplex table
* row stored in the arrays ind and val.
*
* BACKGROUND
*
* The system of equality constraints of the LP problem is:
*
* xR = A * xS, (1)
*
* where xR is the vector of auxliary variables, xS is the vector of
* structural variables, A is the matrix of constraint coefficients.
*
* The system (1) can be written in homogenous form as follows:
*
* A~ * x = 0, (2)
*
* where A~ = (I | -A) is the augmented constraint matrix (has m rows
* and m+n columns), x = (xR | xS) is the vector of all (auxiliary and
* structural) variables.
*
* By definition for the current basis we have:
*
* A~ = (B | N), (3)
*
* where B is the basis matrix. Thus, the system (2) can be written as:
*
* B * xB + N * xN = 0. (4)
*
* From (4) it follows that:
*
* xB = A^ * xN, (5)
*
* where the matrix
*
* A^ = - inv(B) * N (6)
*
* is called the simplex table.
*
* It is understood that i-th row of the simplex table is:
*
* e * A^ = - e * inv(B) * N, (7)
*
* where e is a unity vector with e[i] = 1.
*
* To compute i-th row of the simplex table the routine first computes
* i-th row of the inverse:
*
* rho = inv(B') * e, (8)
*
* where B' is a matrix transposed to B, and then computes elements of
* i-th row of the simplex table as scalar products:
*
* alfa[i,j] = - rho * N[j] for all j, (9)
*
* where N[j] is a column of the augmented constraint matrix A~, which
* corresponds to some non-basic auxiliary or structural variable. */
int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[])
{ int m = lp->m;
int n = lp->n;
int i, t, len, lll, *iii;
double alfa, *rho, *vvv;
if (!(m == 0 || lp->valid))
xerror("glp_eval_tab_row: basis factorization does not exist\n"
);
if (!(1 <= k && k <= m+n))
xerror("glp_eval_tab_row: k = %d; variable number out of range"
, k);
/* determine xB[i] which corresponds to x[k] */
if (k <= m)
i = glp_get_row_bind(lp, k);
else
i = glp_get_col_bind(lp, k-m);
if (i == 0)
xerror("glp_eval_tab_row: k = %d; variable must be basic", k);
xassert(1 <= i && i <= m);
/* allocate working arrays */
rho = xcalloc(1+m, sizeof(double));
iii = xcalloc(1+m, sizeof(int));
vvv = xcalloc(1+m, sizeof(double));
/* compute i-th row of the inverse; see (8) */
for (t = 1; t <= m; t++) rho[t] = 0.0;
rho[i] = 1.0;
glp_btran(lp, rho);
/* compute i-th row of the simplex table */
len = 0;
for (k = 1; k <= m+n; k++)
{ if (k <= m)
{ /* x[k] is auxiliary variable, so N[k] is a unity column */
if (glp_get_row_stat(lp, k) == GLP_BS) continue;
/* compute alfa[i,j]; see (9) */
alfa = - rho[k];
}
else
{ /* x[k] is structural variable, so N[k] is a column of the
original constraint matrix A with negative sign */
if (glp_get_col_stat(lp, k-m) == GLP_BS) continue;
/* compute alfa[i,j]; see (9) */
lll = glp_get_mat_col(lp, k-m, iii, vvv);
alfa = 0.0;
for (t = 1; t <= lll; t++) alfa += rho[iii[t]] * vvv[t];
}
/* store alfa[i,j] */
if (alfa != 0.0) len++, ind[len] = k, val[len] = alfa;
}
xassert(len <= n);
/* free working arrays */
xfree(rho);
xfree(iii);
xfree(vvv);
/* return to the calling program */
return len;
}
/***********************************************************************
* NAME
*
* glp_eval_tab_col - compute column of the simplex tableau
*
* SYNOPSIS
*
* int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[]);
*
* DESCRIPTION
*
* The routine glp_eval_tab_col computes a column of the current simplex
* table for the non-basic variable, which is specified by the number k:
* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n,
* x[k] is (k-m)-th structural variable, where m is number of rows, and
* n is number of columns. The current basis must be available.
*
* The routine stores row indices and numerical values of non-zero
* elements of the computed column using sparse format to the locations
* ind[1], ..., ind[len] and val[1], ..., val[len] respectively, where
* 0 <= len <= m is number of non-zeros returned on exit.
*
* Element indices stored in the array ind have the same sense as the
* index k, i.e. indices 1 to m denote auxiliary variables and indices
* m+1 to m+n denote structural ones (all these variables are obviously
* basic by the definition).
*
* The computed column shows how basic variables depend on the specified
* non-basic variable x[k] = xN[j]:
*
* xB[1] = ... + alfa[1,j]*xN[j] + ...
* xB[2] = ... + alfa[2,j]*xN[j] + ...
* . . . . . .
* xB[m] = ... + alfa[m,j]*xN[j] + ...
*
* where alfa[i,j] are elements of the simplex table column, xB[i] are
* basic (auxiliary and structural) variables.
*
* RETURNS
*
* The routine returns number of non-zero elements in the simplex table
* column stored in the arrays ind and val.
*
* BACKGROUND
*
* As it was explained in comments to the routine glp_eval_tab_row (see
* above) the simplex table is the following matrix:
*
* A^ = - inv(B) * N. (1)
*
* Therefore j-th column of the simplex table is:
*
* A^ * e = - inv(B) * N * e = - inv(B) * N[j], (2)
*
* where e is a unity vector with e[j] = 1, B is the basis matrix, N[j]
* is a column of the augmented constraint matrix A~, which corresponds
* to the given non-basic auxiliary or structural variable. */
int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[])
{ int m = lp->m;
int n = lp->n;
int t, len, stat;
double *col;
if (!(m == 0 || lp->valid))
xerror("glp_eval_tab_col: basis factorization does not exist\n"
);
if (!(1 <= k && k <= m+n))
xerror("glp_eval_tab_col: k = %d; variable number out of range"
, k);
if (k <= m)
stat = glp_get_row_stat(lp, k);
else
stat = glp_get_col_stat(lp, k-m);
if (stat == GLP_BS)
xerror("glp_eval_tab_col: k = %d; variable must be non-basic",
k);
/* obtain column N[k] with negative sign */
col = xcalloc(1+m, sizeof(double));
for (t = 1; t <= m; t++) col[t] = 0.0;
if (k <= m)
{ /* x[k] is auxiliary variable, so N[k] is a unity column */
col[k] = -1.0;
}
else
{ /* x[k] is structural variable, so N[k] is a column of the
original constraint matrix A with negative sign */
len = glp_get_mat_col(lp, k-m, ind, val);
for (t = 1; t <= len; t++) col[ind[t]] = val[t];
}
/* compute column of the simplex table, which corresponds to the
specified non-basic variable x[k] */
glp_ftran(lp, col);
len = 0;
for (t = 1; t <= m; t++)
{ if (col[t] != 0.0)
{ len++;
ind[len] = glp_get_bhead(lp, t);
val[len] = col[t];
}
}
xfree(col);
/* return to the calling program */
return len;
}
/***********************************************************************
* NAME
*
* glp_transform_row - transform explicitly specified row
*
* SYNOPSIS
*
* int glp_transform_row(glp_prob *P, int len, int ind[], double val[]);
*
* DESCRIPTION
*
* The routine glp_transform_row performs the same operation as the
* routine glp_eval_tab_row with exception that the row to be
* transformed is specified explicitly as a sparse vector.
*
* The explicitly specified row may be thought as a linear form:
*
* x = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n], (1)
*
* where x is an auxiliary variable for this row, a[j] are coefficients
* of the linear form, x[m+j] are structural variables.
*
* On entry column indices and numerical values of non-zero elements of
* the row should be stored in locations ind[1], ..., ind[len] and
* val[1], ..., val[len], where len is the number of non-zero elements.
*
* This routine uses the system of equality constraints and the current
* basis in order to express the auxiliary variable x in (1) through the
* current non-basic variables (as if the transformed row were added to
* the problem object and its auxiliary variable were basic), i.e. the
* resultant row has the form:
*
* x = alfa[1]*xN[1] + alfa[2]*xN[2] + ... + alfa[n]*xN[n], (2)
*
* where xN[j] are non-basic (auxiliary or structural) variables, n is
* the number of columns in the LP problem object.
*
* On exit the routine stores indices and numerical values of non-zero
* elements of the resultant row (2) in locations ind[1], ..., ind[len']
* and val[1], ..., val[len'], where 0 <= len' <= n is the number of
* non-zero elements in the resultant row returned by the routine. Note
* that indices (numbers) of non-basic variables stored in the array ind
* correspond to original ordinal numbers of variables: indices 1 to m
* mean auxiliary variables and indices m+1 to m+n mean structural ones.
*
* RETURNS
*
* The routine returns len', which is the number of non-zero elements in
* the resultant row stored in the arrays ind and val.
*
* BACKGROUND
*
* The explicitly specified row (1) is transformed in the same way as it
* were the objective function row.
*
* From (1) it follows that:
*
* x = aB * xB + aN * xN, (3)
*
* where xB is the vector of basic variables, xN is the vector of
* non-basic variables.
*
* The simplex table, which corresponds to the current basis, is:
*
* xB = [-inv(B) * N] * xN. (4)
*
* Therefore substituting xB from (4) to (3) we have:
*
* x = aB * [-inv(B) * N] * xN + aN * xN =
* (5)
* = rho * (-N) * xN + aN * xN = alfa * xN,
*
* where:
*
* rho = inv(B') * aB, (6)
*
* and
*
* alfa = aN + rho * (-N) (7)
*
* is the resultant row computed by the routine. */
int glp_transform_row(glp_prob *P, int len, int ind[], double val[])
{ int i, j, k, m, n, t, lll, *iii;
double alfa, *a, *aB, *rho, *vvv;
if (!glp_bf_exists(P))
xerror("glp_transform_row: basis factorization does not exist "
"\n");
m = glp_get_num_rows(P);
n = glp_get_num_cols(P);
/* unpack the row to be transformed to the array a */
a = xcalloc(1+n, sizeof(double));
for (j = 1; j <= n; j++) a[j] = 0.0;
if (!(0 <= len && len <= n))
xerror("glp_transform_row: len = %d; invalid row length\n",
len);
for (t = 1; t <= len; t++)
{ j = ind[t];
if (!(1 <= j && j <= n))
xerror("glp_transform_row: ind[%d] = %d; column index out o"
"f range\n", t, j);
if (val[t] == 0.0)
xerror("glp_transform_row: val[%d] = 0; zero coefficient no"
"t allowed\n", t);
if (a[j] != 0.0)
xerror("glp_transform_row: ind[%d] = %d; duplicate column i"
"ndices not allowed\n", t, j);
a[j] = val[t];
}
/* construct the vector aB */
aB = xcalloc(1+m, sizeof(double));
for (i = 1; i <= m; i++)
{ k = glp_get_bhead(P, i);
/* xB[i] is k-th original variable */
xassert(1 <= k && k <= m+n);
aB[i] = (k <= m ? 0.0 : a[k-m]);
}
/* solve the system B'*rho = aB to compute the vector rho */
rho = aB, glp_btran(P, rho);
/* compute coefficients at non-basic auxiliary variables */
len = 0;
for (i = 1; i <= m; i++)
{ if (glp_get_row_stat(P, i) != GLP_BS)
{ alfa = - rho[i];
if (alfa != 0.0)
{ len++;
ind[len] = i;
val[len] = alfa;
}
}
}
/* compute coefficients at non-basic structural variables */
iii = xcalloc(1+m, sizeof(int));
vvv = xcalloc(1+m, sizeof(double));
for (j = 1; j <= n; j++)
{ if (glp_get_col_stat(P, j) != GLP_BS)
{ alfa = a[j];
lll = glp_get_mat_col(P, j, iii, vvv);
for (t = 1; t <= lll; t++) alfa += vvv[t] * rho[iii[t]];
if (alfa != 0.0)
{ len++;
ind[len] = m+j;
val[len] = alfa;
}
}
}
xassert(len <= n);
xfree(iii);
xfree(vvv);
xfree(aB);
xfree(a);
return len;
}
/***********************************************************************
* NAME
*
* glp_transform_col - transform explicitly specified column
*
* SYNOPSIS
*
* int glp_transform_col(glp_prob *P, int len, int ind[], double val[]);
*
* DESCRIPTION
*
* The routine glp_transform_col performs the same operation as the
* routine glp_eval_tab_col with exception that the column to be
* transformed is specified explicitly as a sparse vector.
*
* The explicitly specified column may be thought as if it were added
* to the original system of equality constraints:
*
* x[1] = a[1,1]*x[m+1] + ... + a[1,n]*x[m+n] + a[1]*x
* x[2] = a[2,1]*x[m+1] + ... + a[2,n]*x[m+n] + a[2]*x (1)
* . . . . . . . . . . . . . . .
* x[m] = a[m,1]*x[m+1] + ... + a[m,n]*x[m+n] + a[m]*x
*
* where x[i] are auxiliary variables, x[m+j] are structural variables,
* x is a structural variable for the explicitly specified column, a[i]
* are constraint coefficients for x.
*
* On entry row indices and numerical values of non-zero elements of
* the column should be stored in locations ind[1], ..., ind[len] and
* val[1], ..., val[len], where len is the number of non-zero elements.
*
* This routine uses the system of equality constraints and the current
* basis in order to express the current basic variables through the
* structural variable x in (1) (as if the transformed column were added
* to the problem object and the variable x were non-basic), i.e. the
* resultant column has the form:
*
* xB[1] = ... + alfa[1]*x
* xB[2] = ... + alfa[2]*x (2)
* . . . . . .
* xB[m] = ... + alfa[m]*x
*
* where xB are basic (auxiliary and structural) variables, m is the
* number of rows in the problem object.
*
* On exit the routine stores indices and numerical values of non-zero
* elements of the resultant column (2) in locations ind[1], ...,
* ind[len'] and val[1], ..., val[len'], where 0 <= len' <= m is the
* number of non-zero element in the resultant column returned by the
* routine. Note that indices (numbers) of basic variables stored in
* the array ind correspond to original ordinal numbers of variables:
* indices 1 to m mean auxiliary variables and indices m+1 to m+n mean
* structural ones.
*
* RETURNS
*
* The routine returns len', which is the number of non-zero elements
* in the resultant column stored in the arrays ind and val.
*
* BACKGROUND
*
* The explicitly specified column (1) is transformed in the same way
* as any other column of the constraint matrix using the formula:
*
* alfa = inv(B) * a, (3)
*
* where alfa is the resultant column computed by the routine. */
int glp_transform_col(glp_prob *P, int len, int ind[], double val[])
{ int i, m, t;
double *a, *alfa;
if (!glp_bf_exists(P))
xerror("glp_transform_col: basis factorization does not exist "
"\n");
m = glp_get_num_rows(P);
/* unpack the column to be transformed to the array a */
a = xcalloc(1+m, sizeof(double));
for (i = 1; i <= m; i++) a[i] = 0.0;
if (!(0 <= len && len <= m))
xerror("glp_transform_col: len = %d; invalid column length\n",
len);
for (t = 1; t <= len; t++)
{ i = ind[t];
if (!(1 <= i && i <= m))
xerror("glp_transform_col: ind[%d] = %d; row index out of r"
"ange\n", t, i);
if (val[t] == 0.0)
xerror("glp_transform_col: val[%d] = 0; zero coefficient no"
"t allowed\n", t);
if (a[i] != 0.0)
xerror("glp_transform_col: ind[%d] = %d; duplicate row indi"
"ces not allowed\n", t, i);
a[i] = val[t];
}
/* solve the system B*a = alfa to compute the vector alfa */
alfa = a, glp_ftran(P, alfa);
/* store resultant coefficients */
len = 0;
for (i = 1; i <= m; i++)
{ if (alfa[i] != 0.0)
{ len++;
ind[len] = glp_get_bhead(P, i);
val[len] = alfa[i];
}
}
xfree(a);
return len;
}
/***********************************************************************
* NAME
*
* glp_prim_rtest - perform primal ratio test
*
* SYNOPSIS
*
* int glp_prim_rtest(glp_prob *P, int len, const int ind[],
* const double val[], int dir, double eps);
*
* DESCRIPTION
*
* The routine glp_prim_rtest performs the primal ratio test using an
* explicitly specified column of the simplex table.
*
* The current basic solution associated with the LP problem object
* must be primal feasible.
*
* The explicitly specified column of the simplex table shows how the
* basic variables xB depend on some non-basic variable x (which is not
* necessarily presented in the problem object):
*
* xB[1] = ... + alfa[1] * x + ...
* xB[2] = ... + alfa[2] * x + ... (*)
* . . . . . . . .
* xB[m] = ... + alfa[m] * x + ...
*
* The column (*) is specifed on entry to the routine using the sparse
* format. Ordinal numbers of basic variables xB[i] should be placed in
* locations ind[1], ..., ind[len], where ordinal number 1 to m denote
* auxiliary variables, and ordinal numbers m+1 to m+n denote structural
* variables. The corresponding non-zero coefficients alfa[i] should be
* placed in locations val[1], ..., val[len]. The arrays ind and val are
* not changed on exit.
*
* The parameter dir specifies direction in which the variable x changes
* on entering the basis: +1 means increasing, -1 means decreasing.
*
* The parameter eps is an absolute tolerance (small positive number)
* used by the routine to skip small alfa[j] of the row (*).
*
* The routine determines which basic variable (among specified in
* ind[1], ..., ind[len]) should leave the basis in order to keep primal
* feasibility.
*
* RETURNS
*
* The routine glp_prim_rtest returns the index piv in the arrays ind
* and val corresponding to the pivot element chosen, 1 <= piv <= len.
* If the adjacent basic solution is primal unbounded and therefore the
* choice cannot be made, the routine returns zero.
*
* COMMENTS
*
* If the non-basic variable x is presented in the LP problem object,
* the column (*) can be computed with the routine glp_eval_tab_col;
* otherwise it can be computed with the routine glp_transform_col. */
int glp_prim_rtest(glp_prob *P, int len, const int ind[],
const double val[], int dir, double eps)
{ int k, m, n, piv, t, type, stat;
double alfa, big, beta, lb, ub, temp, teta;
if (glp_get_prim_stat(P) != GLP_FEAS)
xerror("glp_prim_rtest: basic solution is not primal feasible "
"\n");
if (!(dir == +1 || dir == -1))
xerror("glp_prim_rtest: dir = %d; invalid parameter\n", dir);
if (!(0.0 < eps && eps < 1.0))
xerror("glp_prim_rtest: eps = %g; invalid parameter\n", eps);
m = glp_get_num_rows(P);
n = glp_get_num_cols(P);
/* initial settings */
piv = 0, teta = DBL_MAX, big = 0.0;
/* walk through the entries of the specified column */
for (t = 1; t <= len; t++)
{ /* get the ordinal number of basic variable */
k = ind[t];
if (!(1 <= k && k <= m+n))
xerror("glp_prim_rtest: ind[%d] = %d; variable number out o"
"f range\n", t, k);
/* determine type, bounds, status and primal value of basic
variable xB[i] = x[k] in the current basic solution */
if (k <= m)
{ type = glp_get_row_type(P, k);
lb = glp_get_row_lb(P, k);
ub = glp_get_row_ub(P, k);
stat = glp_get_row_stat(P, k);
beta = glp_get_row_prim(P, k);
}
else
{ type = glp_get_col_type(P, k-m);
lb = glp_get_col_lb(P, k-m);
ub = glp_get_col_ub(P, k-m);
stat = glp_get_col_stat(P, k-m);
beta = glp_get_col_prim(P, k-m);
}
if (stat != GLP_BS)
xerror("glp_prim_rtest: ind[%d] = %d; non-basic variable no"
"t allowed\n", t, k);
/* determine influence coefficient at basic variable xB[i]
in the explicitly specified column and turn to the case of
increasing the variable x in order to simplify the program
logic */
alfa = (dir > 0 ? + val[t] : - val[t]);
/* analyze main cases */
if (type == GLP_FR)
{ /* xB[i] is free variable */
continue;
}
else if (type == GLP_LO)
lo: { /* xB[i] has an lower bound */
if (alfa > - eps) continue;
temp = (lb - beta) / alfa;
}
else if (type == GLP_UP)
up: { /* xB[i] has an upper bound */
if (alfa < + eps) continue;
temp = (ub - beta) / alfa;
}
else if (type == GLP_DB)
{ /* xB[i] has both lower and upper bounds */
if (alfa < 0.0) goto lo; else goto up;
}
else if (type == GLP_FX)
{ /* xB[i] is fixed variable */
if (- eps < alfa && alfa < + eps) continue;
temp = 0.0;
}
else
xassert(type != type);
/* if the value of the variable xB[i] violates its lower or
upper bound (slightly, because the current basis is assumed
to be primal feasible), temp is negative; we can think this
happens due to round-off errors and the value is exactly on
the bound; this allows replacing temp by zero */
if (temp < 0.0) temp = 0.0;
/* apply the minimal ratio test */
if (teta > temp || teta == temp && big < fabs(alfa))
piv = t, teta = temp, big = fabs(alfa);
}
/* return index of the pivot element chosen */
return piv;
}
/***********************************************************************
* NAME
*
* glp_dual_rtest - perform dual ratio test
*
* SYNOPSIS
*
* int glp_dual_rtest(glp_prob *P, int len, const int ind[],
* const double val[], int dir, double eps);
*
* DESCRIPTION
*
* The routine glp_dual_rtest performs the dual ratio test using an
* explicitly specified row of the simplex table.
*
* The current basic solution associated with the LP problem object
* must be dual feasible.
*
* The explicitly specified row of the simplex table is a linear form
* that shows how some basic variable x (which is not necessarily
* presented in the problem object) depends on non-basic variables xN:
*
* x = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n]. (*)
*
* The row (*) is specified on entry to the routine using the sparse
* format. Ordinal numbers of non-basic variables xN[j] should be placed
* in locations ind[1], ..., ind[len], where ordinal numbers 1 to m
* denote auxiliary variables, and ordinal numbers m+1 to m+n denote
* structural variables. The corresponding non-zero coefficients alfa[j]
* should be placed in locations val[1], ..., val[len]. The arrays ind
* and val are not changed on exit.
*
* The parameter dir specifies direction in which the variable x changes
* on leaving the basis: +1 means that x goes to its lower bound, and -1
* means that x goes to its upper bound.
*
* The parameter eps is an absolute tolerance (small positive number)
* used by the routine to skip small alfa[j] of the row (*).
*
* The routine determines which non-basic variable (among specified in
* ind[1], ..., ind[len]) should enter the basis in order to keep dual
* feasibility.
*
* RETURNS
*
* The routine glp_dual_rtest returns the index piv in the arrays ind
* and val corresponding to the pivot element chosen, 1 <= piv <= len.
* If the adjacent basic solution is dual unbounded and therefore the
* choice cannot be made, the routine returns zero.
*
* COMMENTS
*
* If the basic variable x is presented in the LP problem object, the
* row (*) can be computed with the routine glp_eval_tab_row; otherwise
* it can be computed with the routine glp_transform_row. */
int glp_dual_rtest(glp_prob *P, int len, const int ind[],
const double val[], int dir, double eps)
{ int k, m, n, piv, t, stat;
double alfa, big, cost, obj, temp, teta;
if (glp_get_dual_stat(P) != GLP_FEAS)
xerror("glp_dual_rtest: basic solution is not dual feasible\n")
;
if (!(dir == +1 || dir == -1))
xerror("glp_dual_rtest: dir = %d; invalid parameter\n", dir);
if (!(0.0 < eps && eps < 1.0))
xerror("glp_dual_rtest: eps = %g; invalid parameter\n", eps);
m = glp_get_num_rows(P);
n = glp_get_num_cols(P);
/* take into account optimization direction */
obj = (glp_get_obj_dir(P) == GLP_MIN ? +1.0 : -1.0);
/* initial settings */
piv = 0, teta = DBL_MAX, big = 0.0;
/* walk through the entries of the specified row */
for (t = 1; t <= len; t++)
{ /* get ordinal number of non-basic variable */
k = ind[t];
if (!(1 <= k && k <= m+n))
xerror("glp_dual_rtest: ind[%d] = %d; variable number out o"
"f range\n", t, k);
/* determine status and reduced cost of non-basic variable
x[k] = xN[j] in the current basic solution */
if (k <= m)
{ stat = glp_get_row_stat(P, k);
cost = glp_get_row_dual(P, k);
}
else
{ stat = glp_get_col_stat(P, k-m);
cost = glp_get_col_dual(P, k-m);
}
if (stat == GLP_BS)
xerror("glp_dual_rtest: ind[%d] = %d; basic variable not al"
"lowed\n", t, k);
/* determine influence coefficient at non-basic variable xN[j]
in the explicitly specified row and turn to the case of
increasing the variable x in order to simplify the program
logic */
alfa = (dir > 0 ? + val[t] : - val[t]);
/* analyze main cases */
if (stat == GLP_NL)
{ /* xN[j] is on its lower bound */
if (alfa < + eps) continue;
temp = (obj * cost) / alfa;
}
else if (stat == GLP_NU)
{ /* xN[j] is on its upper bound */
if (alfa > - eps) continue;
temp = (obj * cost) / alfa;
}
else if (stat == GLP_NF)
{ /* xN[j] is non-basic free variable */
if (- eps < alfa && alfa < + eps) continue;
temp = 0.0;
}
else if (stat == GLP_NS)
{ /* xN[j] is non-basic fixed variable */
continue;
}
else
xassert(stat != stat);
/* if the reduced cost of the variable xN[j] violates its zero
bound (slightly, because the current basis is assumed to be
dual feasible), temp is negative; we can think this happens
due to round-off errors and the reduced cost is exact zero;
this allows replacing temp by zero */
if (temp < 0.0) temp = 0.0;
/* apply the minimal ratio test */
if (teta > temp || teta == temp && big < fabs(alfa))
piv = t, teta = temp, big = fabs(alfa);
}
/* return index of the pivot element chosen */
return piv;
}
/***********************************************************************
* NAME
*
* glp_analyze_row - simulate one iteration of dual simplex method
*
* SYNOPSIS
*
* int glp_analyze_row(glp_prob *P, int len, const int ind[],
* const double val[], int type, double rhs, double eps, int *piv,
* double *x, double *dx, double *y, double *dy, double *dz);
*
* DESCRIPTION
*
* Let the current basis be optimal or dual feasible, and there be
* specified a row (constraint), which is violated by the current basic
* solution. The routine glp_analyze_row simulates one iteration of the
* dual simplex method to determine some information on the adjacent
* basis (see below), where the specified row becomes active constraint
* (i.e. its auxiliary variable becomes non-basic).
*
* The current basic solution associated with the problem object passed
* to the routine must be dual feasible, and its primal components must
* be defined.
*
* The row to be analyzed must be previously transformed either with
* the routine glp_eval_tab_row (if the row is in the problem object)
* or with the routine glp_transform_row (if the row is external, i.e.
* not in the problem object). This is needed to express the row only
* through (auxiliary and structural) variables, which are non-basic in
* the current basis:
*
* y = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n],
*
* where y is an auxiliary variable of the row, alfa[j] is an influence
* coefficient, xN[j] is a non-basic variable.
*
* The row is passed to the routine in sparse format. Ordinal numbers
* of non-basic variables are stored in locations ind[1], ..., ind[len],
* where numbers 1 to m denote auxiliary variables while numbers m+1 to
* m+n denote structural variables. Corresponding non-zero coefficients
* alfa[j] are stored in locations val[1], ..., val[len]. The arrays
* ind and val are ot changed on exit.
*
* The parameters type and rhs specify the row type and its right-hand
* side as follows:
*
* type = GLP_LO: y = sum alfa[j] * xN[j] >= rhs
*
* type = GLP_UP: y = sum alfa[j] * xN[j] <= rhs
*
* The parameter eps is an absolute tolerance (small positive number)
* used by the routine to skip small coefficients alfa[j] on performing
* the dual ratio test.
*
* If the operation was successful, the routine stores the following
* information to corresponding location (if some parameter is NULL,
* its value is not stored):
*
* piv index in the array ind and val, 1 <= piv <= len, determining
* the non-basic variable, which would enter the adjacent basis;
*
* x value of the non-basic variable in the current basis;
*
* dx difference between values of the non-basic variable in the
* adjacent and current bases, dx = x.new - x.old;
*
* y value of the row (i.e. of its auxiliary variable) in the
* current basis;
*
* dy difference between values of the row in the adjacent and
* current bases, dy = y.new - y.old;
*
* dz difference between values of the objective function in the
* adjacent and current bases, dz = z.new - z.old. Note that in
* case of minimization dz >= 0, and in case of maximization
* dz <= 0, i.e. in the adjacent basis the objective function
* always gets worse (degrades). */
int _glp_analyze_row(glp_prob *P, int len, const int ind[],
const double val[], int type, double rhs, double eps, int *_piv,
double *_x, double *_dx, double *_y, double *_dy, double *_dz)
{ int t, k, dir, piv, ret = 0;
double x, dx, y, dy, dz;
if (P->pbs_stat == GLP_UNDEF)
xerror("glp_analyze_row: primal basic solution components are "
"undefined\n");
if (P->dbs_stat != GLP_FEAS)
xerror("glp_analyze_row: basic solution is not dual feasible\n"
);
/* compute the row value y = sum alfa[j] * xN[j] in the current
basis */
if (!(0 <= len && len <= P->n))
xerror("glp_analyze_row: len = %d; invalid row length\n", len);
y = 0.0;
for (t = 1; t <= len; t++)
{ /* determine value of x[k] = xN[j] in the current basis */
k = ind[t];
if (!(1 <= k && k <= P->m+P->n))
xerror("glp_analyze_row: ind[%d] = %d; row/column index out"
" of range\n", t, k);
if (k <= P->m)
{ /* x[k] is auxiliary variable */
if (P->row[k]->stat == GLP_BS)
xerror("glp_analyze_row: ind[%d] = %d; basic auxiliary v"
"ariable is not allowed\n", t, k);
x = P->row[k]->prim;
}
else
{ /* x[k] is structural variable */
if (P->col[k-P->m]->stat == GLP_BS)
xerror("glp_analyze_row: ind[%d] = %d; basic structural "
"variable is not allowed\n", t, k);
x = P->col[k-P->m]->prim;
}
y += val[t] * x;
}
/* check if the row is primal infeasible in the current basis,
i.e. the constraint is violated at the current point */
if (type == GLP_LO)
{ if (y >= rhs)
{ /* the constraint is not violated */
ret = 1;
goto done;
}
/* in the adjacent basis y goes to its lower bound */
dir = +1;
}
else if (type == GLP_UP)
{ if (y <= rhs)
{ /* the constraint is not violated */
ret = 1;
goto done;
}
/* in the adjacent basis y goes to its upper bound */
dir = -1;
}
else
xerror("glp_analyze_row: type = %d; invalid parameter\n",
type);
/* compute dy = y.new - y.old */
dy = rhs - y;
/* perform dual ratio test to determine which non-basic variable
should enter the adjacent basis to keep it dual feasible */
piv = glp_dual_rtest(P, len, ind, val, dir, eps);
if (piv == 0)
{ /* no dual feasible adjacent basis exists */
ret = 2;
goto done;
}
/* non-basic variable x[k] = xN[j] should enter the basis */
k = ind[piv];
xassert(1 <= k && k <= P->m+P->n);
/* determine its value in the current basis */
if (k <= P->m)
x = P->row[k]->prim;
else
x = P->col[k-P->m]->prim;
/* compute dx = x.new - x.old = dy / alfa[j] */
xassert(val[piv] != 0.0);
dx = dy / val[piv];
/* compute dz = z.new - z.old = d[j] * dx, where d[j] is reduced
cost of xN[j] in the current basis */
if (k <= P->m)
dz = P->row[k]->dual * dx;
else
dz = P->col[k-P->m]->dual * dx;
/* store the analysis results */
if (_piv != NULL) *_piv = piv;
if (_x != NULL) *_x = x;
if (_dx != NULL) *_dx = dx;
if (_y != NULL) *_y = y;
if (_dy != NULL) *_dy = dy;
if (_dz != NULL) *_dz = dz;
done: return ret;
}
#if 0
int main(void)
{ /* example program for the routine glp_analyze_row */
glp_prob *P;
glp_smcp parm;
int i, k, len, piv, ret, ind[1+100];
double rhs, x, dx, y, dy, dz, val[1+100];
P = glp_create_prob();
/* read plan.mps (see glpk/examples) */
ret = glp_read_mps(P, GLP_MPS_DECK, NULL, "plan.mps");
glp_assert(ret == 0);
/* and solve it to optimality */
ret = glp_simplex(P, NULL);
glp_assert(ret == 0);
glp_assert(glp_get_status(P) == GLP_OPT);
/* the optimal objective value is 296.217 */
/* we would like to know what happens if we would add a new row
(constraint) to plan.mps:
.01 * bin1 + .01 * bin2 + .02 * bin4 + .02 * bin5 <= 12 */
/* first, we specify this new row */
glp_create_index(P);
len = 0;
ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01;
ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01;
ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02;
ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02;
rhs = 12;
/* then we can compute value of the row (i.e. of its auxiliary
variable) in the current basis to see if the constraint is
violated */
y = 0.0;
for (k = 1; k <= len; k++)
y += val[k] * glp_get_col_prim(P, ind[k]);
glp_printf("y = %g\n", y);
/* this prints y = 15.1372, so the constraint is violated, since
we require that y <= rhs = 12 */
/* now we transform the row to express it only through non-basic
(auxiliary and artificial) variables */
len = glp_transform_row(P, len, ind, val);
/* finally, we simulate one step of the dual simplex method to
obtain necessary information for the adjacent basis */
ret = _glp_analyze_row(P, len, ind, val, GLP_UP, rhs, 1e-9, &piv,
&x, &dx, &y, &dy, &dz);
glp_assert(ret == 0);
glp_printf("k = %d, x = %g; dx = %g; y = %g; dy = %g; dz = %g\n",
ind[piv], x, dx, y, dy, dz);
/* this prints dz = 5.64418 and means that in the adjacent basis
the objective function would be 296.217 + 5.64418 = 301.861 */
/* now we actually include the row into the problem object; note
that the arrays ind and val are clobbered, so we need to build
them once again */
len = 0;
ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01;
ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01;
ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02;
ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02;
rhs = 12;
i = glp_add_rows(P, 1);
glp_set_row_bnds(P, i, GLP_UP, 0, rhs);
glp_set_mat_row(P, i, len, ind, val);
/* and perform one dual simplex iteration */
glp_init_smcp(&parm);
parm.meth = GLP_DUAL;
parm.it_lim = 1;
glp_simplex(P, &parm);
/* the current objective value is 301.861 */
return 0;
}
#endif
/***********************************************************************
* NAME
*
* glp_analyze_bound - analyze active bound of non-basic variable
*
* SYNOPSIS
*
* void glp_analyze_bound(glp_prob *P, int k, double *limit1, int *var1,
* double *limit2, int *var2);
*
* DESCRIPTION
*
* The routine glp_analyze_bound analyzes the effect of varying the
* active bound of specified non-basic variable.
*
* The non-basic variable is specified by the parameter k, where
* 1 <= k <= m means auxiliary variable of corresponding row while
* m+1 <= k <= m+n means structural variable (column).
*
* Note that the current basic solution must be optimal, and the basis
* factorization must exist.
*
* Results of the analysis have the following meaning.
*
* value1 is the minimal value of the active bound, at which the basis
* still remains primal feasible and thus optimal. -DBL_MAX means that
* the active bound has no lower limit.
*
* var1 is the ordinal number of an auxiliary (1 to m) or structural
* (m+1 to n) basic variable, which reaches its bound first and thereby
* limits further decreasing the active bound being analyzed.
* if value1 = -DBL_MAX, var1 is set to 0.
*
* value2 is the maximal value of the active bound, at which the basis
* still remains primal feasible and thus optimal. +DBL_MAX means that
* the active bound has no upper limit.
*
* var2 is the ordinal number of an auxiliary (1 to m) or structural
* (m+1 to n) basic variable, which reaches its bound first and thereby
* limits further increasing the active bound being analyzed.
* if value2 = +DBL_MAX, var2 is set to 0. */
void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1,
double *value2, int *var2)
{ GLPROW *row;
GLPCOL *col;
int m, n, stat, kase, p, len, piv, *ind;
double x, new_x, ll, uu, xx, delta, *val;
/* sanity checks */
if (P == NULL || P->magic != GLP_PROB_MAGIC)
xerror("glp_analyze_bound: P = %p; invalid problem object\n",
P);
m = P->m, n = P->n;
if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS))
xerror("glp_analyze_bound: optimal basic solution required\n");
if (!(m == 0 || P->valid))
xerror("glp_analyze_bound: basis factorization required\n");
if (!(1 <= k && k <= m+n))
xerror("glp_analyze_bound: k = %d; variable number out of rang"
"e\n", k);
/* retrieve information about the specified non-basic variable
x[k] whose active bound is to be analyzed */
if (k <= m)
{ row = P->row[k];
stat = row->stat;
x = row->prim;
}
else
{ col = P->col[k-m];
stat = col->stat;
x = col->prim;
}
if (stat == GLP_BS)
xerror("glp_analyze_bound: k = %d; basic variable not allowed "
"\n", k);
/* allocate working arrays */
ind = xcalloc(1+m, sizeof(int));
val = xcalloc(1+m, sizeof(double));
/* compute column of the simplex table corresponding to the
non-basic variable x[k] */
len = glp_eval_tab_col(P, k, ind, val);
xassert(0 <= len && len <= m);
/* perform analysis */
for (kase = -1; kase <= +1; kase += 2)
{ /* kase < 0 means active bound of x[k] is decreasing;
kase > 0 means active bound of x[k] is increasing */
/* use the primal ratio test to determine some basic variable
x[p] which reaches its bound first */
piv = glp_prim_rtest(P, len, ind, val, kase, 1e-9);
if (piv == 0)
{ /* nothing limits changing the active bound of x[k] */
p = 0;
new_x = (kase < 0 ? -DBL_MAX : +DBL_MAX);
goto store;
}
/* basic variable x[p] limits changing the active bound of
x[k]; determine its value in the current basis */
xassert(1 <= piv && piv <= len);
p = ind[piv];
if (p <= m)
{ row = P->row[p];
ll = glp_get_row_lb(P, row->i);
uu = glp_get_row_ub(P, row->i);
stat = row->stat;
xx = row->prim;
}
else
{ col = P->col[p-m];
ll = glp_get_col_lb(P, col->j);
uu = glp_get_col_ub(P, col->j);
stat = col->stat;
xx = col->prim;
}
xassert(stat == GLP_BS);
/* determine delta x[p] = bound of x[p] - value of x[p] */
if (kase < 0 && val[piv] > 0.0 ||
kase > 0 && val[piv] < 0.0)
{ /* delta x[p] < 0, so x[p] goes toward its lower bound */
xassert(ll != -DBL_MAX);
delta = ll - xx;
}
else
{ /* delta x[p] > 0, so x[p] goes toward its upper bound */
xassert(uu != +DBL_MAX);
delta = uu - xx;
}
/* delta x[p] = alfa[p,k] * delta x[k], so new x[k] = x[k] +
delta x[k] = x[k] + delta x[p] / alfa[p,k] is the value of
x[k] in the adjacent basis */
xassert(val[piv] != 0.0);
new_x = x + delta / val[piv];
store: /* store analysis results */
if (kase < 0)
{ if (value1 != NULL) *value1 = new_x;
if (var1 != NULL) *var1 = p;
}
else
{ if (value2 != NULL) *value2 = new_x;
if (var2 != NULL) *var2 = p;
}
}
/* free working arrays */
xfree(ind);
xfree(val);
return;
}
/***********************************************************************
* NAME
*
* glp_analyze_coef - analyze objective coefficient at basic variable
*
* SYNOPSIS
*
* void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
* double *value1, double *coef2, int *var2, double *value2);
*
* DESCRIPTION
*
* The routine glp_analyze_coef analyzes the effect of varying the
* objective coefficient at specified basic variable.
*
* The basic variable is specified by the parameter k, where
* 1 <= k <= m means auxiliary variable of corresponding row while
* m+1 <= k <= m+n means structural variable (column).
*
* Note that the current basic solution must be optimal, and the basis
* factorization must exist.
*
* Results of the analysis have the following meaning.
*
* coef1 is the minimal value of the objective coefficient, at which
* the basis still remains dual feasible and thus optimal. -DBL_MAX
* means that the objective coefficient has no lower limit.
*
* var1 is the ordinal number of an auxiliary (1 to m) or structural
* (m+1 to n) non-basic variable, whose reduced cost reaches its zero
* bound first and thereby limits further decreasing the objective
* coefficient being analyzed. If coef1 = -DBL_MAX, var1 is set to 0.
*
* value1 is value of the basic variable being analyzed in an adjacent
* basis, which is defined as follows. Let the objective coefficient
* reaches its minimal value (coef1) and continues decreasing. Then the
* reduced cost of the limiting non-basic variable (var1) becomes dual
* infeasible and the current basis becomes non-optimal that forces the
* limiting non-basic variable to enter the basis replacing there some
* basic variable that leaves the basis to keep primal feasibility.
* Should note that on determining the adjacent basis current bounds
* of the basic variable being analyzed are ignored as if it were free
* (unbounded) variable, so it cannot leave the basis. It may happen
* that no dual feasible adjacent basis exists, in which case value1 is
* set to -DBL_MAX or +DBL_MAX.
*
* coef2 is the maximal value of the objective coefficient, at which
* the basis still remains dual feasible and thus optimal. +DBL_MAX
* means that the objective coefficient has no upper limit.
*
* var2 is the ordinal number of an auxiliary (1 to m) or structural
* (m+1 to n) non-basic variable, whose reduced cost reaches its zero
* bound first and thereby limits further increasing the objective
* coefficient being analyzed. If coef2 = +DBL_MAX, var2 is set to 0.
*
* value2 is value of the basic variable being analyzed in an adjacent
* basis, which is defined exactly in the same way as value1 above with
* exception that now the objective coefficient is increasing. */
void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
double *value1, double *coef2, int *var2, double *value2)
{ GLPROW *row; GLPCOL *col;
int m, n, type, stat, kase, p, q, dir, clen, cpiv, rlen, rpiv,
*cind, *rind;
double lb, ub, coef, x, lim_coef, new_x, d, delta, ll, uu, xx,
*rval, *cval;
/* sanity checks */
if (P == NULL || P->magic != GLP_PROB_MAGIC)
xerror("glp_analyze_coef: P = %p; invalid problem object\n",
P);
m = P->m, n = P->n;
if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS))
xerror("glp_analyze_coef: optimal basic solution required\n");
if (!(m == 0 || P->valid))
xerror("glp_analyze_coef: basis factorization required\n");
if (!(1 <= k && k <= m+n))
xerror("glp_analyze_coef: k = %d; variable number out of range"
"\n", k);
/* retrieve information about the specified basic variable x[k]
whose objective coefficient c[k] is to be analyzed */
if (k <= m)
{ row = P->row[k];
type = row->type;
lb = row->lb;
ub = row->ub;
coef = 0.0;
stat = row->stat;
x = row->prim;
}
else
{ col = P->col[k-m];
type = col->type;
lb = col->lb;
ub = col->ub;
coef = col->coef;
stat = col->stat;
x = col->prim;
}
if (stat != GLP_BS)
xerror("glp_analyze_coef: k = %d; non-basic variable not allow"
"ed\n", k);
/* allocate working arrays */
cind = xcalloc(1+m, sizeof(int));
cval = xcalloc(1+m, sizeof(double));
rind = xcalloc(1+n, sizeof(int));
rval = xcalloc(1+n, sizeof(double));
/* compute row of the simplex table corresponding to the basic
variable x[k] */
rlen = glp_eval_tab_row(P, k, rind, rval);
xassert(0 <= rlen && rlen <= n);
/* perform analysis */
for (kase = -1; kase <= +1; kase += 2)
{ /* kase < 0 means objective coefficient c[k] is decreasing;
kase > 0 means objective coefficient c[k] is increasing */
/* note that decreasing c[k] is equivalent to increasing dual
variable lambda[k] and vice versa; we need to correctly set
the dir flag as required by the routine glp_dual_rtest */
if (P->dir == GLP_MIN)
dir = - kase;
else if (P->dir == GLP_MAX)
dir = + kase;
else
xassert(P != P);
/* use the dual ratio test to determine non-basic variable
x[q] whose reduced cost d[q] reaches zero bound first */
rpiv = glp_dual_rtest(P, rlen, rind, rval, dir, 1e-9);
if (rpiv == 0)
{ /* nothing limits changing c[k] */
lim_coef = (kase < 0 ? -DBL_MAX : +DBL_MAX);
q = 0;
/* x[k] keeps its current value */
new_x = x;
goto store;
}
/* non-basic variable x[q] limits changing coefficient c[k];
determine its status and reduced cost d[k] in the current
basis */
xassert(1 <= rpiv && rpiv <= rlen);
q = rind[rpiv];
xassert(1 <= q && q <= m+n);
if (q <= m)
{ row = P->row[q];
stat = row->stat;
d = row->dual;
}
else
{ col = P->col[q-m];
stat = col->stat;
d = col->dual;
}
/* note that delta d[q] = new d[q] - d[q] = - d[q], because
new d[q] = 0; delta d[q] = alfa[k,q] * delta c[k], so
delta c[k] = delta d[q] / alfa[k,q] = - d[q] / alfa[k,q] */
xassert(rval[rpiv] != 0.0);
delta = - d / rval[rpiv];
/* compute new c[k] = c[k] + delta c[k], which is the limiting
value of the objective coefficient c[k] */
lim_coef = coef + delta;
/* let c[k] continue decreasing/increasing that makes d[q]
dual infeasible and forces x[q] to enter the basis;
to perform the primal ratio test we need to know in which
direction x[q] changes on entering the basis; we determine
that analyzing the sign of delta d[q] (see above), since
d[q] may be close to zero having wrong sign */
/* let, for simplicity, the problem is minimization */
if (kase < 0 && rval[rpiv] > 0.0 ||
kase > 0 && rval[rpiv] < 0.0)
{ /* delta d[q] < 0, so d[q] being non-negative will become
negative, so x[q] will increase */
dir = +1;
}
else
{ /* delta d[q] > 0, so d[q] being non-positive will become
positive, so x[q] will decrease */
dir = -1;
}
/* if the problem is maximization, correct the direction */
if (P->dir == GLP_MAX) dir = - dir;
/* check that we didn't make a silly mistake */
if (dir > 0)
xassert(stat == GLP_NL || stat == GLP_NF);
else
xassert(stat == GLP_NU || stat == GLP_NF);
/* compute column of the simplex table corresponding to the
non-basic variable x[q] */
clen = glp_eval_tab_col(P, q, cind, cval);
/* make x[k] temporarily free (unbounded) */
if (k <= m)
{ row = P->row[k];
row->type = GLP_FR;
row->lb = row->ub = 0.0;
}
else
{ col = P->col[k-m];
col->type = GLP_FR;
col->lb = col->ub = 0.0;
}
/* use the primal ratio test to determine some basic variable
which leaves the basis */
cpiv = glp_prim_rtest(P, clen, cind, cval, dir, 1e-9);
/* restore original bounds of the basic variable x[k] */
if (k <= m)
{ row = P->row[k];
row->type = type;
row->lb = lb, row->ub = ub;
}
else
{ col = P->col[k-m];
col->type = type;
col->lb = lb, col->ub = ub;
}
if (cpiv == 0)
{ /* non-basic variable x[q] can change unlimitedly */
if (dir < 0 && rval[rpiv] > 0.0 ||
dir > 0 && rval[rpiv] < 0.0)
{ /* delta x[k] = alfa[k,q] * delta x[q] < 0 */
new_x = -DBL_MAX;
}
else
{ /* delta x[k] = alfa[k,q] * delta x[q] > 0 */
new_x = +DBL_MAX;
}
goto store;
}
/* some basic variable x[p] limits changing non-basic variable
x[q] in the adjacent basis */
xassert(1 <= cpiv && cpiv <= clen);
p = cind[cpiv];
xassert(1 <= p && p <= m+n);
xassert(p != k);
if (p <= m)
{ row = P->row[p];
xassert(row->stat == GLP_BS);
ll = glp_get_row_lb(P, row->i);
uu = glp_get_row_ub(P, row->i);
xx = row->prim;
}
else
{ col = P->col[p-m];
xassert(col->stat == GLP_BS);
ll = glp_get_col_lb(P, col->j);
uu = glp_get_col_ub(P, col->j);
xx = col->prim;
}
/* determine delta x[p] = new x[p] - x[p] */
if (dir < 0 && cval[cpiv] > 0.0 ||
dir > 0 && cval[cpiv] < 0.0)
{ /* delta x[p] < 0, so x[p] goes toward its lower bound */
xassert(ll != -DBL_MAX);
delta = ll - xx;
}
else
{ /* delta x[p] > 0, so x[p] goes toward its upper bound */
xassert(uu != +DBL_MAX);
delta = uu - xx;
}
/* compute new x[k] = x[k] + alfa[k,q] * delta x[q], where
delta x[q] = delta x[p] / alfa[p,q] */
xassert(cval[cpiv] != 0.0);
new_x = x + (rval[rpiv] / cval[cpiv]) * delta;
store: /* store analysis results */
if (kase < 0)
{ if (coef1 != NULL) *coef1 = lim_coef;
if (var1 != NULL) *var1 = q;
if (value1 != NULL) *value1 = new_x;
}
else
{ if (coef2 != NULL) *coef2 = lim_coef;
if (var2 != NULL) *var2 = q;
if (value2 != NULL) *value2 = new_x;
}
}
/* free working arrays */
xfree(cind);
xfree(cval);
xfree(rind);
xfree(rval);
return;
}
/* eof */