You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2237 lines
79 KiB
2237 lines
79 KiB
/* glpapi12.c (basis factorization and simplex tableau routines) */
|
|
|
|
/***********************************************************************
|
|
* This code is part of GLPK (GNU Linear Programming Kit).
|
|
*
|
|
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
|
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
|
|
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
|
|
* reserved. E-mail: <mao@gnu.org>.
|
|
*
|
|
* GLPK is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
* License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
|
***********************************************************************/
|
|
|
|
#include "draft.h"
|
|
#include "env.h"
|
|
#include "prob.h"
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_bf_exists - check if the basis factorization exists
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_bf_exists(glp_prob *lp);
|
|
*
|
|
* RETURNS
|
|
*
|
|
* If the basis factorization for the current basis associated with
|
|
* the specified problem object exists and therefore is available for
|
|
* computations, the routine glp_bf_exists returns non-zero. Otherwise
|
|
* the routine returns zero. */
|
|
|
|
int glp_bf_exists(glp_prob *lp)
|
|
{ int ret;
|
|
ret = (lp->m == 0 || lp->valid);
|
|
return ret;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_factorize - compute the basis factorization
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_factorize(glp_prob *lp);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_factorize computes the basis factorization for the
|
|
* current basis associated with the specified problem object.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* 0 The basis factorization has been successfully computed.
|
|
*
|
|
* GLP_EBADB
|
|
* The basis matrix is invalid, i.e. the number of basic (auxiliary
|
|
* and structural) variables differs from the number of rows in the
|
|
* problem object.
|
|
*
|
|
* GLP_ESING
|
|
* The basis matrix is singular within the working precision.
|
|
*
|
|
* GLP_ECOND
|
|
* The basis matrix is ill-conditioned. */
|
|
|
|
static int b_col(void *info, int j, int ind[], double val[])
|
|
{ glp_prob *lp = info;
|
|
int m = lp->m;
|
|
GLPAIJ *aij;
|
|
int k, len;
|
|
xassert(1 <= j && j <= m);
|
|
/* determine the ordinal number of basic auxiliary or structural
|
|
variable x[k] corresponding to basic variable xB[j] */
|
|
k = lp->head[j];
|
|
/* build j-th column of the basic matrix, which is k-th column of
|
|
the scaled augmented matrix (I | -R*A*S) */
|
|
if (k <= m)
|
|
{ /* x[k] is auxiliary variable */
|
|
len = 1;
|
|
ind[1] = k;
|
|
val[1] = 1.0;
|
|
}
|
|
else
|
|
{ /* x[k] is structural variable */
|
|
len = 0;
|
|
for (aij = lp->col[k-m]->ptr; aij != NULL; aij = aij->c_next)
|
|
{ len++;
|
|
ind[len] = aij->row->i;
|
|
val[len] = - aij->row->rii * aij->val * aij->col->sjj;
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static void copy_bfcp(glp_prob *lp);
|
|
|
|
int glp_factorize(glp_prob *lp)
|
|
{ int m = lp->m;
|
|
int n = lp->n;
|
|
GLPROW **row = lp->row;
|
|
GLPCOL **col = lp->col;
|
|
int *head = lp->head;
|
|
int j, k, stat, ret;
|
|
/* invalidate the basis factorization */
|
|
lp->valid = 0;
|
|
/* build the basis header */
|
|
j = 0;
|
|
for (k = 1; k <= m+n; k++)
|
|
{ if (k <= m)
|
|
{ stat = row[k]->stat;
|
|
row[k]->bind = 0;
|
|
}
|
|
else
|
|
{ stat = col[k-m]->stat;
|
|
col[k-m]->bind = 0;
|
|
}
|
|
if (stat == GLP_BS)
|
|
{ j++;
|
|
if (j > m)
|
|
{ /* too many basic variables */
|
|
ret = GLP_EBADB;
|
|
goto fini;
|
|
}
|
|
head[j] = k;
|
|
if (k <= m)
|
|
row[k]->bind = j;
|
|
else
|
|
col[k-m]->bind = j;
|
|
}
|
|
}
|
|
if (j < m)
|
|
{ /* too few basic variables */
|
|
ret = GLP_EBADB;
|
|
goto fini;
|
|
}
|
|
/* try to factorize the basis matrix */
|
|
if (m > 0)
|
|
{ if (lp->bfd == NULL)
|
|
{ lp->bfd = bfd_create_it();
|
|
copy_bfcp(lp);
|
|
}
|
|
switch (bfd_factorize(lp->bfd, m, lp->head, b_col, lp))
|
|
{ case 0:
|
|
/* ok */
|
|
break;
|
|
case BFD_ESING:
|
|
/* singular matrix */
|
|
ret = GLP_ESING;
|
|
goto fini;
|
|
case BFD_ECOND:
|
|
/* ill-conditioned matrix */
|
|
ret = GLP_ECOND;
|
|
goto fini;
|
|
default:
|
|
xassert(lp != lp);
|
|
}
|
|
lp->valid = 1;
|
|
}
|
|
/* factorization successful */
|
|
ret = 0;
|
|
fini: /* bring the return code to the calling program */
|
|
return ret;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_bf_updated - check if the basis factorization has been updated
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_bf_updated(glp_prob *lp);
|
|
*
|
|
* RETURNS
|
|
*
|
|
* If the basis factorization has been just computed from scratch, the
|
|
* routine glp_bf_updated returns zero. Otherwise, if the factorization
|
|
* has been updated one or more times, the routine returns non-zero. */
|
|
|
|
int glp_bf_updated(glp_prob *lp)
|
|
{ int cnt;
|
|
if (!(lp->m == 0 || lp->valid))
|
|
xerror("glp_bf_update: basis factorization does not exist\n");
|
|
#if 0 /* 15/XI-2009 */
|
|
cnt = (lp->m == 0 ? 0 : lp->bfd->upd_cnt);
|
|
#else
|
|
cnt = (lp->m == 0 ? 0 : bfd_get_count(lp->bfd));
|
|
#endif
|
|
return cnt;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_get_bfcp - retrieve basis factorization control parameters
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_get_bfcp retrieves control parameters, which are
|
|
* used on computing and updating the basis factorization associated
|
|
* with the specified problem object.
|
|
*
|
|
* Current values of control parameters are stored by the routine in
|
|
* a glp_bfcp structure, which the parameter parm points to. */
|
|
|
|
void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm)
|
|
{ glp_bfcp *bfcp = lp->bfcp;
|
|
if (bfcp == NULL)
|
|
{ parm->type = GLP_BF_FT;
|
|
parm->lu_size = 0;
|
|
parm->piv_tol = 0.10;
|
|
parm->piv_lim = 4;
|
|
parm->suhl = GLP_ON;
|
|
parm->eps_tol = 1e-15;
|
|
parm->max_gro = 1e+10;
|
|
parm->nfs_max = 100;
|
|
parm->upd_tol = 1e-6;
|
|
parm->nrs_max = 100;
|
|
parm->rs_size = 0;
|
|
}
|
|
else
|
|
memcpy(parm, bfcp, sizeof(glp_bfcp));
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_set_bfcp - change basis factorization control parameters
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_set_bfcp changes control parameters, which are used
|
|
* by internal GLPK routines in computing and updating the basis
|
|
* factorization associated with the specified problem object.
|
|
*
|
|
* New values of the control parameters should be passed in a structure
|
|
* glp_bfcp, which the parameter parm points to.
|
|
*
|
|
* The parameter parm can be specified as NULL, in which case all
|
|
* control parameters are reset to their default values. */
|
|
|
|
#if 0 /* 15/XI-2009 */
|
|
static void copy_bfcp(glp_prob *lp)
|
|
{ glp_bfcp _parm, *parm = &_parm;
|
|
BFD *bfd = lp->bfd;
|
|
glp_get_bfcp(lp, parm);
|
|
xassert(bfd != NULL);
|
|
bfd->type = parm->type;
|
|
bfd->lu_size = parm->lu_size;
|
|
bfd->piv_tol = parm->piv_tol;
|
|
bfd->piv_lim = parm->piv_lim;
|
|
bfd->suhl = parm->suhl;
|
|
bfd->eps_tol = parm->eps_tol;
|
|
bfd->max_gro = parm->max_gro;
|
|
bfd->nfs_max = parm->nfs_max;
|
|
bfd->upd_tol = parm->upd_tol;
|
|
bfd->nrs_max = parm->nrs_max;
|
|
bfd->rs_size = parm->rs_size;
|
|
return;
|
|
}
|
|
#else
|
|
static void copy_bfcp(glp_prob *lp)
|
|
{ glp_bfcp _parm, *parm = &_parm;
|
|
glp_get_bfcp(lp, parm);
|
|
bfd_set_parm(lp->bfd, parm);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm)
|
|
{ glp_bfcp *bfcp = lp->bfcp;
|
|
if (parm == NULL)
|
|
{ /* reset to default values */
|
|
if (bfcp != NULL)
|
|
xfree(bfcp), lp->bfcp = NULL;
|
|
}
|
|
else
|
|
{ /* set to specified values */
|
|
if (bfcp == NULL)
|
|
bfcp = lp->bfcp = xmalloc(sizeof(glp_bfcp));
|
|
memcpy(bfcp, parm, sizeof(glp_bfcp));
|
|
if (!(bfcp->type == GLP_BF_FT || bfcp->type == GLP_BF_BG ||
|
|
bfcp->type == GLP_BF_GR))
|
|
xerror("glp_set_bfcp: type = %d; invalid parameter\n",
|
|
bfcp->type);
|
|
if (bfcp->lu_size < 0)
|
|
xerror("glp_set_bfcp: lu_size = %d; invalid parameter\n",
|
|
bfcp->lu_size);
|
|
if (!(0.0 < bfcp->piv_tol && bfcp->piv_tol < 1.0))
|
|
xerror("glp_set_bfcp: piv_tol = %g; invalid parameter\n",
|
|
bfcp->piv_tol);
|
|
if (bfcp->piv_lim < 1)
|
|
xerror("glp_set_bfcp: piv_lim = %d; invalid parameter\n",
|
|
bfcp->piv_lim);
|
|
if (!(bfcp->suhl == GLP_ON || bfcp->suhl == GLP_OFF))
|
|
xerror("glp_set_bfcp: suhl = %d; invalid parameter\n",
|
|
bfcp->suhl);
|
|
if (!(0.0 <= bfcp->eps_tol && bfcp->eps_tol <= 1e-6))
|
|
xerror("glp_set_bfcp: eps_tol = %g; invalid parameter\n",
|
|
bfcp->eps_tol);
|
|
if (bfcp->max_gro < 1.0)
|
|
xerror("glp_set_bfcp: max_gro = %g; invalid parameter\n",
|
|
bfcp->max_gro);
|
|
if (!(1 <= bfcp->nfs_max && bfcp->nfs_max <= 32767))
|
|
xerror("glp_set_bfcp: nfs_max = %d; invalid parameter\n",
|
|
bfcp->nfs_max);
|
|
if (!(0.0 < bfcp->upd_tol && bfcp->upd_tol < 1.0))
|
|
xerror("glp_set_bfcp: upd_tol = %g; invalid parameter\n",
|
|
bfcp->upd_tol);
|
|
if (!(1 <= bfcp->nrs_max && bfcp->nrs_max <= 32767))
|
|
xerror("glp_set_bfcp: nrs_max = %d; invalid parameter\n",
|
|
bfcp->nrs_max);
|
|
if (bfcp->rs_size < 0)
|
|
xerror("glp_set_bfcp: rs_size = %d; invalid parameter\n",
|
|
bfcp->nrs_max);
|
|
if (bfcp->rs_size == 0)
|
|
bfcp->rs_size = 20 * bfcp->nrs_max;
|
|
}
|
|
if (lp->bfd != NULL) copy_bfcp(lp);
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_get_bhead - retrieve the basis header information
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_get_bhead(glp_prob *lp, int k);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_get_bhead returns the basis header information for
|
|
* the current basis associated with the specified problem object.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* If xB[k], 1 <= k <= m, is i-th auxiliary variable (1 <= i <= m), the
|
|
* routine returns i. Otherwise, if xB[k] is j-th structural variable
|
|
* (1 <= j <= n), the routine returns m+j. Here m is the number of rows
|
|
* and n is the number of columns in the problem object. */
|
|
|
|
int glp_get_bhead(glp_prob *lp, int k)
|
|
{ if (!(lp->m == 0 || lp->valid))
|
|
xerror("glp_get_bhead: basis factorization does not exist\n");
|
|
if (!(1 <= k && k <= lp->m))
|
|
xerror("glp_get_bhead: k = %d; index out of range\n", k);
|
|
return lp->head[k];
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_get_row_bind - retrieve row index in the basis header
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_get_row_bind(glp_prob *lp, int i);
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine glp_get_row_bind returns the index k of basic variable
|
|
* xB[k], 1 <= k <= m, which is i-th auxiliary variable, 1 <= i <= m,
|
|
* in the current basis associated with the specified problem object,
|
|
* where m is the number of rows. However, if i-th auxiliary variable
|
|
* is non-basic, the routine returns zero. */
|
|
|
|
int glp_get_row_bind(glp_prob *lp, int i)
|
|
{ if (!(lp->m == 0 || lp->valid))
|
|
xerror("glp_get_row_bind: basis factorization does not exist\n"
|
|
);
|
|
if (!(1 <= i && i <= lp->m))
|
|
xerror("glp_get_row_bind: i = %d; row number out of range\n",
|
|
i);
|
|
return lp->row[i]->bind;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_get_col_bind - retrieve column index in the basis header
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_get_col_bind(glp_prob *lp, int j);
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine glp_get_col_bind returns the index k of basic variable
|
|
* xB[k], 1 <= k <= m, which is j-th structural variable, 1 <= j <= n,
|
|
* in the current basis associated with the specified problem object,
|
|
* where m is the number of rows, n is the number of columns. However,
|
|
* if j-th structural variable is non-basic, the routine returns zero.*/
|
|
|
|
int glp_get_col_bind(glp_prob *lp, int j)
|
|
{ if (!(lp->m == 0 || lp->valid))
|
|
xerror("glp_get_col_bind: basis factorization does not exist\n"
|
|
);
|
|
if (!(1 <= j && j <= lp->n))
|
|
xerror("glp_get_col_bind: j = %d; column number out of range\n"
|
|
, j);
|
|
return lp->col[j]->bind;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_ftran - perform forward transformation (solve system B*x = b)
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* void glp_ftran(glp_prob *lp, double x[]);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_ftran performs forward transformation, i.e. solves
|
|
* the system B*x = b, where B is the basis matrix corresponding to the
|
|
* current basis for the specified problem object, x is the vector of
|
|
* unknowns to be computed, b is the vector of right-hand sides.
|
|
*
|
|
* On entry elements of the vector b should be stored in dense format
|
|
* in locations x[1], ..., x[m], where m is the number of rows. On exit
|
|
* the routine stores elements of the vector x in the same locations.
|
|
*
|
|
* SCALING/UNSCALING
|
|
*
|
|
* Let A~ = (I | -A) is the augmented constraint matrix of the original
|
|
* (unscaled) problem. In the scaled LP problem instead the matrix A the
|
|
* scaled matrix A" = R*A*S is actually used, so
|
|
*
|
|
* A~" = (I | A") = (I | R*A*S) = (R*I*inv(R) | R*A*S) =
|
|
* (1)
|
|
* = R*(I | A)*S~ = R*A~*S~,
|
|
*
|
|
* is the scaled augmented constraint matrix, where R and S are diagonal
|
|
* scaling matrices used to scale rows and columns of the matrix A, and
|
|
*
|
|
* S~ = diag(inv(R) | S) (2)
|
|
*
|
|
* is an augmented diagonal scaling matrix.
|
|
*
|
|
* By definition:
|
|
*
|
|
* A~ = (B | N), (3)
|
|
*
|
|
* where B is the basic matrix, which consists of basic columns of the
|
|
* augmented constraint matrix A~, and N is a matrix, which consists of
|
|
* non-basic columns of A~. From (1) it follows that:
|
|
*
|
|
* A~" = (B" | N") = (R*B*SB | R*N*SN), (4)
|
|
*
|
|
* where SB and SN are parts of the augmented scaling matrix S~, which
|
|
* correspond to basic and non-basic variables, respectively. Therefore
|
|
*
|
|
* B" = R*B*SB, (5)
|
|
*
|
|
* which is the scaled basis matrix. */
|
|
|
|
void glp_ftran(glp_prob *lp, double x[])
|
|
{ int m = lp->m;
|
|
GLPROW **row = lp->row;
|
|
GLPCOL **col = lp->col;
|
|
int i, k;
|
|
/* B*x = b ===> (R*B*SB)*(inv(SB)*x) = R*b ===>
|
|
B"*x" = b", where b" = R*b, x = SB*x" */
|
|
if (!(m == 0 || lp->valid))
|
|
xerror("glp_ftran: basis factorization does not exist\n");
|
|
/* b" := R*b */
|
|
for (i = 1; i <= m; i++)
|
|
x[i] *= row[i]->rii;
|
|
/* x" := inv(B")*b" */
|
|
if (m > 0) bfd_ftran(lp->bfd, x);
|
|
/* x := SB*x" */
|
|
for (i = 1; i <= m; i++)
|
|
{ k = lp->head[i];
|
|
if (k <= m)
|
|
x[i] /= row[k]->rii;
|
|
else
|
|
x[i] *= col[k-m]->sjj;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_btran - perform backward transformation (solve system B'*x = b)
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* void glp_btran(glp_prob *lp, double x[]);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_btran performs backward transformation, i.e. solves
|
|
* the system B'*x = b, where B' is a matrix transposed to the basis
|
|
* matrix corresponding to the current basis for the specified problem
|
|
* problem object, x is the vector of unknowns to be computed, b is the
|
|
* vector of right-hand sides.
|
|
*
|
|
* On entry elements of the vector b should be stored in dense format
|
|
* in locations x[1], ..., x[m], where m is the number of rows. On exit
|
|
* the routine stores elements of the vector x in the same locations.
|
|
*
|
|
* SCALING/UNSCALING
|
|
*
|
|
* See comments to the routine glp_ftran. */
|
|
|
|
void glp_btran(glp_prob *lp, double x[])
|
|
{ int m = lp->m;
|
|
GLPROW **row = lp->row;
|
|
GLPCOL **col = lp->col;
|
|
int i, k;
|
|
/* B'*x = b ===> (SB*B'*R)*(inv(R)*x) = SB*b ===>
|
|
(B")'*x" = b", where b" = SB*b, x = R*x" */
|
|
if (!(m == 0 || lp->valid))
|
|
xerror("glp_btran: basis factorization does not exist\n");
|
|
/* b" := SB*b */
|
|
for (i = 1; i <= m; i++)
|
|
{ k = lp->head[i];
|
|
if (k <= m)
|
|
x[i] /= row[k]->rii;
|
|
else
|
|
x[i] *= col[k-m]->sjj;
|
|
}
|
|
/* x" := inv[(B")']*b" */
|
|
if (m > 0) bfd_btran(lp->bfd, x);
|
|
/* x := R*x" */
|
|
for (i = 1; i <= m; i++)
|
|
x[i] *= row[i]->rii;
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_warm_up - "warm up" LP basis
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_warm_up(glp_prob *P);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_warm_up "warms up" the LP basis for the specified
|
|
* problem object using current statuses assigned to rows and columns
|
|
* (that is, to auxiliary and structural variables).
|
|
*
|
|
* This operation includes computing factorization of the basis matrix
|
|
* (if it does not exist), computing primal and dual components of basic
|
|
* solution, and determining the solution status.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* 0 The operation has been successfully performed.
|
|
*
|
|
* GLP_EBADB
|
|
* The basis matrix is invalid, i.e. the number of basic (auxiliary
|
|
* and structural) variables differs from the number of rows in the
|
|
* problem object.
|
|
*
|
|
* GLP_ESING
|
|
* The basis matrix is singular within the working precision.
|
|
*
|
|
* GLP_ECOND
|
|
* The basis matrix is ill-conditioned. */
|
|
|
|
int glp_warm_up(glp_prob *P)
|
|
{ GLPROW *row;
|
|
GLPCOL *col;
|
|
GLPAIJ *aij;
|
|
int i, j, type, stat, ret;
|
|
double eps, temp, *work;
|
|
/* invalidate basic solution */
|
|
P->pbs_stat = P->dbs_stat = GLP_UNDEF;
|
|
P->obj_val = 0.0;
|
|
P->some = 0;
|
|
for (i = 1; i <= P->m; i++)
|
|
{ row = P->row[i];
|
|
row->prim = row->dual = 0.0;
|
|
}
|
|
for (j = 1; j <= P->n; j++)
|
|
{ col = P->col[j];
|
|
col->prim = col->dual = 0.0;
|
|
}
|
|
/* compute the basis factorization, if necessary */
|
|
if (!glp_bf_exists(P))
|
|
{ ret = glp_factorize(P);
|
|
if (ret != 0) goto done;
|
|
}
|
|
/* allocate working array */
|
|
work = xcalloc(1+P->m, sizeof(double));
|
|
/* determine and store values of non-basic variables, compute
|
|
vector (- N * xN) */
|
|
for (i = 1; i <= P->m; i++)
|
|
work[i] = 0.0;
|
|
for (i = 1; i <= P->m; i++)
|
|
{ row = P->row[i];
|
|
if (row->stat == GLP_BS)
|
|
continue;
|
|
else if (row->stat == GLP_NL)
|
|
row->prim = row->lb;
|
|
else if (row->stat == GLP_NU)
|
|
row->prim = row->ub;
|
|
else if (row->stat == GLP_NF)
|
|
row->prim = 0.0;
|
|
else if (row->stat == GLP_NS)
|
|
row->prim = row->lb;
|
|
else
|
|
xassert(row != row);
|
|
/* N[j] is i-th column of matrix (I|-A) */
|
|
work[i] -= row->prim;
|
|
}
|
|
for (j = 1; j <= P->n; j++)
|
|
{ col = P->col[j];
|
|
if (col->stat == GLP_BS)
|
|
continue;
|
|
else if (col->stat == GLP_NL)
|
|
col->prim = col->lb;
|
|
else if (col->stat == GLP_NU)
|
|
col->prim = col->ub;
|
|
else if (col->stat == GLP_NF)
|
|
col->prim = 0.0;
|
|
else if (col->stat == GLP_NS)
|
|
col->prim = col->lb;
|
|
else
|
|
xassert(col != col);
|
|
/* N[j] is (m+j)-th column of matrix (I|-A) */
|
|
if (col->prim != 0.0)
|
|
{ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
|
|
work[aij->row->i] += aij->val * col->prim;
|
|
}
|
|
}
|
|
/* compute vector of basic variables xB = - inv(B) * N * xN */
|
|
glp_ftran(P, work);
|
|
/* store values of basic variables, check primal feasibility */
|
|
P->pbs_stat = GLP_FEAS;
|
|
for (i = 1; i <= P->m; i++)
|
|
{ row = P->row[i];
|
|
if (row->stat != GLP_BS)
|
|
continue;
|
|
row->prim = work[row->bind];
|
|
type = row->type;
|
|
if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
|
|
{ eps = 1e-6 + 1e-9 * fabs(row->lb);
|
|
if (row->prim < row->lb - eps)
|
|
P->pbs_stat = GLP_INFEAS;
|
|
}
|
|
if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
|
|
{ eps = 1e-6 + 1e-9 * fabs(row->ub);
|
|
if (row->prim > row->ub + eps)
|
|
P->pbs_stat = GLP_INFEAS;
|
|
}
|
|
}
|
|
for (j = 1; j <= P->n; j++)
|
|
{ col = P->col[j];
|
|
if (col->stat != GLP_BS)
|
|
continue;
|
|
col->prim = work[col->bind];
|
|
type = col->type;
|
|
if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
|
|
{ eps = 1e-6 + 1e-9 * fabs(col->lb);
|
|
if (col->prim < col->lb - eps)
|
|
P->pbs_stat = GLP_INFEAS;
|
|
}
|
|
if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
|
|
{ eps = 1e-6 + 1e-9 * fabs(col->ub);
|
|
if (col->prim > col->ub + eps)
|
|
P->pbs_stat = GLP_INFEAS;
|
|
}
|
|
}
|
|
/* compute value of the objective function */
|
|
P->obj_val = P->c0;
|
|
for (j = 1; j <= P->n; j++)
|
|
{ col = P->col[j];
|
|
P->obj_val += col->coef * col->prim;
|
|
}
|
|
/* build vector cB of objective coefficients at basic variables */
|
|
for (i = 1; i <= P->m; i++)
|
|
work[i] = 0.0;
|
|
for (j = 1; j <= P->n; j++)
|
|
{ col = P->col[j];
|
|
if (col->stat == GLP_BS)
|
|
work[col->bind] = col->coef;
|
|
}
|
|
/* compute vector of simplex multipliers pi = inv(B') * cB */
|
|
glp_btran(P, work);
|
|
/* compute and store reduced costs of non-basic variables d[j] =
|
|
c[j] - N'[j] * pi, check dual feasibility */
|
|
P->dbs_stat = GLP_FEAS;
|
|
for (i = 1; i <= P->m; i++)
|
|
{ row = P->row[i];
|
|
if (row->stat == GLP_BS)
|
|
{ row->dual = 0.0;
|
|
continue;
|
|
}
|
|
/* N[j] is i-th column of matrix (I|-A) */
|
|
row->dual = - work[i];
|
|
#if 0 /* 07/III-2013 */
|
|
type = row->type;
|
|
temp = (P->dir == GLP_MIN ? + row->dual : - row->dual);
|
|
if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 ||
|
|
(type == GLP_FR || type == GLP_UP) && temp > +1e-5)
|
|
P->dbs_stat = GLP_INFEAS;
|
|
#else
|
|
stat = row->stat;
|
|
temp = (P->dir == GLP_MIN ? + row->dual : - row->dual);
|
|
if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 ||
|
|
(stat == GLP_NF || stat == GLP_NU) && temp > +1e-5)
|
|
P->dbs_stat = GLP_INFEAS;
|
|
#endif
|
|
}
|
|
for (j = 1; j <= P->n; j++)
|
|
{ col = P->col[j];
|
|
if (col->stat == GLP_BS)
|
|
{ col->dual = 0.0;
|
|
continue;
|
|
}
|
|
/* N[j] is (m+j)-th column of matrix (I|-A) */
|
|
col->dual = col->coef;
|
|
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
|
|
col->dual += aij->val * work[aij->row->i];
|
|
#if 0 /* 07/III-2013 */
|
|
type = col->type;
|
|
temp = (P->dir == GLP_MIN ? + col->dual : - col->dual);
|
|
if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 ||
|
|
(type == GLP_FR || type == GLP_UP) && temp > +1e-5)
|
|
P->dbs_stat = GLP_INFEAS;
|
|
#else
|
|
stat = col->stat;
|
|
temp = (P->dir == GLP_MIN ? + col->dual : - col->dual);
|
|
if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 ||
|
|
(stat == GLP_NF || stat == GLP_NU) && temp > +1e-5)
|
|
P->dbs_stat = GLP_INFEAS;
|
|
#endif
|
|
}
|
|
/* free working array */
|
|
xfree(work);
|
|
ret = 0;
|
|
done: return ret;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_eval_tab_row - compute row of the simplex tableau
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[]);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_eval_tab_row computes a row of the current simplex
|
|
* tableau for the basic variable, which is specified by the number k:
|
|
* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n,
|
|
* x[k] is (k-m)-th structural variable, where m is number of rows, and
|
|
* n is number of columns. The current basis must be available.
|
|
*
|
|
* The routine stores column indices and numerical values of non-zero
|
|
* elements of the computed row using sparse format to the locations
|
|
* ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where
|
|
* 0 <= len <= n is number of non-zeros returned on exit.
|
|
*
|
|
* Element indices stored in the array ind have the same sense as the
|
|
* index k, i.e. indices 1 to m denote auxiliary variables and indices
|
|
* m+1 to m+n denote structural ones (all these variables are obviously
|
|
* non-basic by definition).
|
|
*
|
|
* The computed row shows how the specified basic variable x[k] = xB[i]
|
|
* depends on non-basic variables:
|
|
*
|
|
* xB[i] = alfa[i,1]*xN[1] + alfa[i,2]*xN[2] + ... + alfa[i,n]*xN[n],
|
|
*
|
|
* where alfa[i,j] are elements of the simplex table row, xN[j] are
|
|
* non-basic (auxiliary and structural) variables.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine returns number of non-zero elements in the simplex table
|
|
* row stored in the arrays ind and val.
|
|
*
|
|
* BACKGROUND
|
|
*
|
|
* The system of equality constraints of the LP problem is:
|
|
*
|
|
* xR = A * xS, (1)
|
|
*
|
|
* where xR is the vector of auxliary variables, xS is the vector of
|
|
* structural variables, A is the matrix of constraint coefficients.
|
|
*
|
|
* The system (1) can be written in homogenous form as follows:
|
|
*
|
|
* A~ * x = 0, (2)
|
|
*
|
|
* where A~ = (I | -A) is the augmented constraint matrix (has m rows
|
|
* and m+n columns), x = (xR | xS) is the vector of all (auxiliary and
|
|
* structural) variables.
|
|
*
|
|
* By definition for the current basis we have:
|
|
*
|
|
* A~ = (B | N), (3)
|
|
*
|
|
* where B is the basis matrix. Thus, the system (2) can be written as:
|
|
*
|
|
* B * xB + N * xN = 0. (4)
|
|
*
|
|
* From (4) it follows that:
|
|
*
|
|
* xB = A^ * xN, (5)
|
|
*
|
|
* where the matrix
|
|
*
|
|
* A^ = - inv(B) * N (6)
|
|
*
|
|
* is called the simplex table.
|
|
*
|
|
* It is understood that i-th row of the simplex table is:
|
|
*
|
|
* e * A^ = - e * inv(B) * N, (7)
|
|
*
|
|
* where e is a unity vector with e[i] = 1.
|
|
*
|
|
* To compute i-th row of the simplex table the routine first computes
|
|
* i-th row of the inverse:
|
|
*
|
|
* rho = inv(B') * e, (8)
|
|
*
|
|
* where B' is a matrix transposed to B, and then computes elements of
|
|
* i-th row of the simplex table as scalar products:
|
|
*
|
|
* alfa[i,j] = - rho * N[j] for all j, (9)
|
|
*
|
|
* where N[j] is a column of the augmented constraint matrix A~, which
|
|
* corresponds to some non-basic auxiliary or structural variable. */
|
|
|
|
int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[])
|
|
{ int m = lp->m;
|
|
int n = lp->n;
|
|
int i, t, len, lll, *iii;
|
|
double alfa, *rho, *vvv;
|
|
if (!(m == 0 || lp->valid))
|
|
xerror("glp_eval_tab_row: basis factorization does not exist\n"
|
|
);
|
|
if (!(1 <= k && k <= m+n))
|
|
xerror("glp_eval_tab_row: k = %d; variable number out of range"
|
|
, k);
|
|
/* determine xB[i] which corresponds to x[k] */
|
|
if (k <= m)
|
|
i = glp_get_row_bind(lp, k);
|
|
else
|
|
i = glp_get_col_bind(lp, k-m);
|
|
if (i == 0)
|
|
xerror("glp_eval_tab_row: k = %d; variable must be basic", k);
|
|
xassert(1 <= i && i <= m);
|
|
/* allocate working arrays */
|
|
rho = xcalloc(1+m, sizeof(double));
|
|
iii = xcalloc(1+m, sizeof(int));
|
|
vvv = xcalloc(1+m, sizeof(double));
|
|
/* compute i-th row of the inverse; see (8) */
|
|
for (t = 1; t <= m; t++) rho[t] = 0.0;
|
|
rho[i] = 1.0;
|
|
glp_btran(lp, rho);
|
|
/* compute i-th row of the simplex table */
|
|
len = 0;
|
|
for (k = 1; k <= m+n; k++)
|
|
{ if (k <= m)
|
|
{ /* x[k] is auxiliary variable, so N[k] is a unity column */
|
|
if (glp_get_row_stat(lp, k) == GLP_BS) continue;
|
|
/* compute alfa[i,j]; see (9) */
|
|
alfa = - rho[k];
|
|
}
|
|
else
|
|
{ /* x[k] is structural variable, so N[k] is a column of the
|
|
original constraint matrix A with negative sign */
|
|
if (glp_get_col_stat(lp, k-m) == GLP_BS) continue;
|
|
/* compute alfa[i,j]; see (9) */
|
|
lll = glp_get_mat_col(lp, k-m, iii, vvv);
|
|
alfa = 0.0;
|
|
for (t = 1; t <= lll; t++) alfa += rho[iii[t]] * vvv[t];
|
|
}
|
|
/* store alfa[i,j] */
|
|
if (alfa != 0.0) len++, ind[len] = k, val[len] = alfa;
|
|
}
|
|
xassert(len <= n);
|
|
/* free working arrays */
|
|
xfree(rho);
|
|
xfree(iii);
|
|
xfree(vvv);
|
|
/* return to the calling program */
|
|
return len;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_eval_tab_col - compute column of the simplex tableau
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[]);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_eval_tab_col computes a column of the current simplex
|
|
* table for the non-basic variable, which is specified by the number k:
|
|
* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n,
|
|
* x[k] is (k-m)-th structural variable, where m is number of rows, and
|
|
* n is number of columns. The current basis must be available.
|
|
*
|
|
* The routine stores row indices and numerical values of non-zero
|
|
* elements of the computed column using sparse format to the locations
|
|
* ind[1], ..., ind[len] and val[1], ..., val[len] respectively, where
|
|
* 0 <= len <= m is number of non-zeros returned on exit.
|
|
*
|
|
* Element indices stored in the array ind have the same sense as the
|
|
* index k, i.e. indices 1 to m denote auxiliary variables and indices
|
|
* m+1 to m+n denote structural ones (all these variables are obviously
|
|
* basic by the definition).
|
|
*
|
|
* The computed column shows how basic variables depend on the specified
|
|
* non-basic variable x[k] = xN[j]:
|
|
*
|
|
* xB[1] = ... + alfa[1,j]*xN[j] + ...
|
|
* xB[2] = ... + alfa[2,j]*xN[j] + ...
|
|
* . . . . . .
|
|
* xB[m] = ... + alfa[m,j]*xN[j] + ...
|
|
*
|
|
* where alfa[i,j] are elements of the simplex table column, xB[i] are
|
|
* basic (auxiliary and structural) variables.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine returns number of non-zero elements in the simplex table
|
|
* column stored in the arrays ind and val.
|
|
*
|
|
* BACKGROUND
|
|
*
|
|
* As it was explained in comments to the routine glp_eval_tab_row (see
|
|
* above) the simplex table is the following matrix:
|
|
*
|
|
* A^ = - inv(B) * N. (1)
|
|
*
|
|
* Therefore j-th column of the simplex table is:
|
|
*
|
|
* A^ * e = - inv(B) * N * e = - inv(B) * N[j], (2)
|
|
*
|
|
* where e is a unity vector with e[j] = 1, B is the basis matrix, N[j]
|
|
* is a column of the augmented constraint matrix A~, which corresponds
|
|
* to the given non-basic auxiliary or structural variable. */
|
|
|
|
int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[])
|
|
{ int m = lp->m;
|
|
int n = lp->n;
|
|
int t, len, stat;
|
|
double *col;
|
|
if (!(m == 0 || lp->valid))
|
|
xerror("glp_eval_tab_col: basis factorization does not exist\n"
|
|
);
|
|
if (!(1 <= k && k <= m+n))
|
|
xerror("glp_eval_tab_col: k = %d; variable number out of range"
|
|
, k);
|
|
if (k <= m)
|
|
stat = glp_get_row_stat(lp, k);
|
|
else
|
|
stat = glp_get_col_stat(lp, k-m);
|
|
if (stat == GLP_BS)
|
|
xerror("glp_eval_tab_col: k = %d; variable must be non-basic",
|
|
k);
|
|
/* obtain column N[k] with negative sign */
|
|
col = xcalloc(1+m, sizeof(double));
|
|
for (t = 1; t <= m; t++) col[t] = 0.0;
|
|
if (k <= m)
|
|
{ /* x[k] is auxiliary variable, so N[k] is a unity column */
|
|
col[k] = -1.0;
|
|
}
|
|
else
|
|
{ /* x[k] is structural variable, so N[k] is a column of the
|
|
original constraint matrix A with negative sign */
|
|
len = glp_get_mat_col(lp, k-m, ind, val);
|
|
for (t = 1; t <= len; t++) col[ind[t]] = val[t];
|
|
}
|
|
/* compute column of the simplex table, which corresponds to the
|
|
specified non-basic variable x[k] */
|
|
glp_ftran(lp, col);
|
|
len = 0;
|
|
for (t = 1; t <= m; t++)
|
|
{ if (col[t] != 0.0)
|
|
{ len++;
|
|
ind[len] = glp_get_bhead(lp, t);
|
|
val[len] = col[t];
|
|
}
|
|
}
|
|
xfree(col);
|
|
/* return to the calling program */
|
|
return len;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_transform_row - transform explicitly specified row
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_transform_row(glp_prob *P, int len, int ind[], double val[]);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_transform_row performs the same operation as the
|
|
* routine glp_eval_tab_row with exception that the row to be
|
|
* transformed is specified explicitly as a sparse vector.
|
|
*
|
|
* The explicitly specified row may be thought as a linear form:
|
|
*
|
|
* x = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n], (1)
|
|
*
|
|
* where x is an auxiliary variable for this row, a[j] are coefficients
|
|
* of the linear form, x[m+j] are structural variables.
|
|
*
|
|
* On entry column indices and numerical values of non-zero elements of
|
|
* the row should be stored in locations ind[1], ..., ind[len] and
|
|
* val[1], ..., val[len], where len is the number of non-zero elements.
|
|
*
|
|
* This routine uses the system of equality constraints and the current
|
|
* basis in order to express the auxiliary variable x in (1) through the
|
|
* current non-basic variables (as if the transformed row were added to
|
|
* the problem object and its auxiliary variable were basic), i.e. the
|
|
* resultant row has the form:
|
|
*
|
|
* x = alfa[1]*xN[1] + alfa[2]*xN[2] + ... + alfa[n]*xN[n], (2)
|
|
*
|
|
* where xN[j] are non-basic (auxiliary or structural) variables, n is
|
|
* the number of columns in the LP problem object.
|
|
*
|
|
* On exit the routine stores indices and numerical values of non-zero
|
|
* elements of the resultant row (2) in locations ind[1], ..., ind[len']
|
|
* and val[1], ..., val[len'], where 0 <= len' <= n is the number of
|
|
* non-zero elements in the resultant row returned by the routine. Note
|
|
* that indices (numbers) of non-basic variables stored in the array ind
|
|
* correspond to original ordinal numbers of variables: indices 1 to m
|
|
* mean auxiliary variables and indices m+1 to m+n mean structural ones.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine returns len', which is the number of non-zero elements in
|
|
* the resultant row stored in the arrays ind and val.
|
|
*
|
|
* BACKGROUND
|
|
*
|
|
* The explicitly specified row (1) is transformed in the same way as it
|
|
* were the objective function row.
|
|
*
|
|
* From (1) it follows that:
|
|
*
|
|
* x = aB * xB + aN * xN, (3)
|
|
*
|
|
* where xB is the vector of basic variables, xN is the vector of
|
|
* non-basic variables.
|
|
*
|
|
* The simplex table, which corresponds to the current basis, is:
|
|
*
|
|
* xB = [-inv(B) * N] * xN. (4)
|
|
*
|
|
* Therefore substituting xB from (4) to (3) we have:
|
|
*
|
|
* x = aB * [-inv(B) * N] * xN + aN * xN =
|
|
* (5)
|
|
* = rho * (-N) * xN + aN * xN = alfa * xN,
|
|
*
|
|
* where:
|
|
*
|
|
* rho = inv(B') * aB, (6)
|
|
*
|
|
* and
|
|
*
|
|
* alfa = aN + rho * (-N) (7)
|
|
*
|
|
* is the resultant row computed by the routine. */
|
|
|
|
int glp_transform_row(glp_prob *P, int len, int ind[], double val[])
|
|
{ int i, j, k, m, n, t, lll, *iii;
|
|
double alfa, *a, *aB, *rho, *vvv;
|
|
if (!glp_bf_exists(P))
|
|
xerror("glp_transform_row: basis factorization does not exist "
|
|
"\n");
|
|
m = glp_get_num_rows(P);
|
|
n = glp_get_num_cols(P);
|
|
/* unpack the row to be transformed to the array a */
|
|
a = xcalloc(1+n, sizeof(double));
|
|
for (j = 1; j <= n; j++) a[j] = 0.0;
|
|
if (!(0 <= len && len <= n))
|
|
xerror("glp_transform_row: len = %d; invalid row length\n",
|
|
len);
|
|
for (t = 1; t <= len; t++)
|
|
{ j = ind[t];
|
|
if (!(1 <= j && j <= n))
|
|
xerror("glp_transform_row: ind[%d] = %d; column index out o"
|
|
"f range\n", t, j);
|
|
if (val[t] == 0.0)
|
|
xerror("glp_transform_row: val[%d] = 0; zero coefficient no"
|
|
"t allowed\n", t);
|
|
if (a[j] != 0.0)
|
|
xerror("glp_transform_row: ind[%d] = %d; duplicate column i"
|
|
"ndices not allowed\n", t, j);
|
|
a[j] = val[t];
|
|
}
|
|
/* construct the vector aB */
|
|
aB = xcalloc(1+m, sizeof(double));
|
|
for (i = 1; i <= m; i++)
|
|
{ k = glp_get_bhead(P, i);
|
|
/* xB[i] is k-th original variable */
|
|
xassert(1 <= k && k <= m+n);
|
|
aB[i] = (k <= m ? 0.0 : a[k-m]);
|
|
}
|
|
/* solve the system B'*rho = aB to compute the vector rho */
|
|
rho = aB, glp_btran(P, rho);
|
|
/* compute coefficients at non-basic auxiliary variables */
|
|
len = 0;
|
|
for (i = 1; i <= m; i++)
|
|
{ if (glp_get_row_stat(P, i) != GLP_BS)
|
|
{ alfa = - rho[i];
|
|
if (alfa != 0.0)
|
|
{ len++;
|
|
ind[len] = i;
|
|
val[len] = alfa;
|
|
}
|
|
}
|
|
}
|
|
/* compute coefficients at non-basic structural variables */
|
|
iii = xcalloc(1+m, sizeof(int));
|
|
vvv = xcalloc(1+m, sizeof(double));
|
|
for (j = 1; j <= n; j++)
|
|
{ if (glp_get_col_stat(P, j) != GLP_BS)
|
|
{ alfa = a[j];
|
|
lll = glp_get_mat_col(P, j, iii, vvv);
|
|
for (t = 1; t <= lll; t++) alfa += vvv[t] * rho[iii[t]];
|
|
if (alfa != 0.0)
|
|
{ len++;
|
|
ind[len] = m+j;
|
|
val[len] = alfa;
|
|
}
|
|
}
|
|
}
|
|
xassert(len <= n);
|
|
xfree(iii);
|
|
xfree(vvv);
|
|
xfree(aB);
|
|
xfree(a);
|
|
return len;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_transform_col - transform explicitly specified column
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_transform_col(glp_prob *P, int len, int ind[], double val[]);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_transform_col performs the same operation as the
|
|
* routine glp_eval_tab_col with exception that the column to be
|
|
* transformed is specified explicitly as a sparse vector.
|
|
*
|
|
* The explicitly specified column may be thought as if it were added
|
|
* to the original system of equality constraints:
|
|
*
|
|
* x[1] = a[1,1]*x[m+1] + ... + a[1,n]*x[m+n] + a[1]*x
|
|
* x[2] = a[2,1]*x[m+1] + ... + a[2,n]*x[m+n] + a[2]*x (1)
|
|
* . . . . . . . . . . . . . . .
|
|
* x[m] = a[m,1]*x[m+1] + ... + a[m,n]*x[m+n] + a[m]*x
|
|
*
|
|
* where x[i] are auxiliary variables, x[m+j] are structural variables,
|
|
* x is a structural variable for the explicitly specified column, a[i]
|
|
* are constraint coefficients for x.
|
|
*
|
|
* On entry row indices and numerical values of non-zero elements of
|
|
* the column should be stored in locations ind[1], ..., ind[len] and
|
|
* val[1], ..., val[len], where len is the number of non-zero elements.
|
|
*
|
|
* This routine uses the system of equality constraints and the current
|
|
* basis in order to express the current basic variables through the
|
|
* structural variable x in (1) (as if the transformed column were added
|
|
* to the problem object and the variable x were non-basic), i.e. the
|
|
* resultant column has the form:
|
|
*
|
|
* xB[1] = ... + alfa[1]*x
|
|
* xB[2] = ... + alfa[2]*x (2)
|
|
* . . . . . .
|
|
* xB[m] = ... + alfa[m]*x
|
|
*
|
|
* where xB are basic (auxiliary and structural) variables, m is the
|
|
* number of rows in the problem object.
|
|
*
|
|
* On exit the routine stores indices and numerical values of non-zero
|
|
* elements of the resultant column (2) in locations ind[1], ...,
|
|
* ind[len'] and val[1], ..., val[len'], where 0 <= len' <= m is the
|
|
* number of non-zero element in the resultant column returned by the
|
|
* routine. Note that indices (numbers) of basic variables stored in
|
|
* the array ind correspond to original ordinal numbers of variables:
|
|
* indices 1 to m mean auxiliary variables and indices m+1 to m+n mean
|
|
* structural ones.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine returns len', which is the number of non-zero elements
|
|
* in the resultant column stored in the arrays ind and val.
|
|
*
|
|
* BACKGROUND
|
|
*
|
|
* The explicitly specified column (1) is transformed in the same way
|
|
* as any other column of the constraint matrix using the formula:
|
|
*
|
|
* alfa = inv(B) * a, (3)
|
|
*
|
|
* where alfa is the resultant column computed by the routine. */
|
|
|
|
int glp_transform_col(glp_prob *P, int len, int ind[], double val[])
|
|
{ int i, m, t;
|
|
double *a, *alfa;
|
|
if (!glp_bf_exists(P))
|
|
xerror("glp_transform_col: basis factorization does not exist "
|
|
"\n");
|
|
m = glp_get_num_rows(P);
|
|
/* unpack the column to be transformed to the array a */
|
|
a = xcalloc(1+m, sizeof(double));
|
|
for (i = 1; i <= m; i++) a[i] = 0.0;
|
|
if (!(0 <= len && len <= m))
|
|
xerror("glp_transform_col: len = %d; invalid column length\n",
|
|
len);
|
|
for (t = 1; t <= len; t++)
|
|
{ i = ind[t];
|
|
if (!(1 <= i && i <= m))
|
|
xerror("glp_transform_col: ind[%d] = %d; row index out of r"
|
|
"ange\n", t, i);
|
|
if (val[t] == 0.0)
|
|
xerror("glp_transform_col: val[%d] = 0; zero coefficient no"
|
|
"t allowed\n", t);
|
|
if (a[i] != 0.0)
|
|
xerror("glp_transform_col: ind[%d] = %d; duplicate row indi"
|
|
"ces not allowed\n", t, i);
|
|
a[i] = val[t];
|
|
}
|
|
/* solve the system B*a = alfa to compute the vector alfa */
|
|
alfa = a, glp_ftran(P, alfa);
|
|
/* store resultant coefficients */
|
|
len = 0;
|
|
for (i = 1; i <= m; i++)
|
|
{ if (alfa[i] != 0.0)
|
|
{ len++;
|
|
ind[len] = glp_get_bhead(P, i);
|
|
val[len] = alfa[i];
|
|
}
|
|
}
|
|
xfree(a);
|
|
return len;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_prim_rtest - perform primal ratio test
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_prim_rtest(glp_prob *P, int len, const int ind[],
|
|
* const double val[], int dir, double eps);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_prim_rtest performs the primal ratio test using an
|
|
* explicitly specified column of the simplex table.
|
|
*
|
|
* The current basic solution associated with the LP problem object
|
|
* must be primal feasible.
|
|
*
|
|
* The explicitly specified column of the simplex table shows how the
|
|
* basic variables xB depend on some non-basic variable x (which is not
|
|
* necessarily presented in the problem object):
|
|
*
|
|
* xB[1] = ... + alfa[1] * x + ...
|
|
* xB[2] = ... + alfa[2] * x + ... (*)
|
|
* . . . . . . . .
|
|
* xB[m] = ... + alfa[m] * x + ...
|
|
*
|
|
* The column (*) is specifed on entry to the routine using the sparse
|
|
* format. Ordinal numbers of basic variables xB[i] should be placed in
|
|
* locations ind[1], ..., ind[len], where ordinal number 1 to m denote
|
|
* auxiliary variables, and ordinal numbers m+1 to m+n denote structural
|
|
* variables. The corresponding non-zero coefficients alfa[i] should be
|
|
* placed in locations val[1], ..., val[len]. The arrays ind and val are
|
|
* not changed on exit.
|
|
*
|
|
* The parameter dir specifies direction in which the variable x changes
|
|
* on entering the basis: +1 means increasing, -1 means decreasing.
|
|
*
|
|
* The parameter eps is an absolute tolerance (small positive number)
|
|
* used by the routine to skip small alfa[j] of the row (*).
|
|
*
|
|
* The routine determines which basic variable (among specified in
|
|
* ind[1], ..., ind[len]) should leave the basis in order to keep primal
|
|
* feasibility.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine glp_prim_rtest returns the index piv in the arrays ind
|
|
* and val corresponding to the pivot element chosen, 1 <= piv <= len.
|
|
* If the adjacent basic solution is primal unbounded and therefore the
|
|
* choice cannot be made, the routine returns zero.
|
|
*
|
|
* COMMENTS
|
|
*
|
|
* If the non-basic variable x is presented in the LP problem object,
|
|
* the column (*) can be computed with the routine glp_eval_tab_col;
|
|
* otherwise it can be computed with the routine glp_transform_col. */
|
|
|
|
int glp_prim_rtest(glp_prob *P, int len, const int ind[],
|
|
const double val[], int dir, double eps)
|
|
{ int k, m, n, piv, t, type, stat;
|
|
double alfa, big, beta, lb, ub, temp, teta;
|
|
if (glp_get_prim_stat(P) != GLP_FEAS)
|
|
xerror("glp_prim_rtest: basic solution is not primal feasible "
|
|
"\n");
|
|
if (!(dir == +1 || dir == -1))
|
|
xerror("glp_prim_rtest: dir = %d; invalid parameter\n", dir);
|
|
if (!(0.0 < eps && eps < 1.0))
|
|
xerror("glp_prim_rtest: eps = %g; invalid parameter\n", eps);
|
|
m = glp_get_num_rows(P);
|
|
n = glp_get_num_cols(P);
|
|
/* initial settings */
|
|
piv = 0, teta = DBL_MAX, big = 0.0;
|
|
/* walk through the entries of the specified column */
|
|
for (t = 1; t <= len; t++)
|
|
{ /* get the ordinal number of basic variable */
|
|
k = ind[t];
|
|
if (!(1 <= k && k <= m+n))
|
|
xerror("glp_prim_rtest: ind[%d] = %d; variable number out o"
|
|
"f range\n", t, k);
|
|
/* determine type, bounds, status and primal value of basic
|
|
variable xB[i] = x[k] in the current basic solution */
|
|
if (k <= m)
|
|
{ type = glp_get_row_type(P, k);
|
|
lb = glp_get_row_lb(P, k);
|
|
ub = glp_get_row_ub(P, k);
|
|
stat = glp_get_row_stat(P, k);
|
|
beta = glp_get_row_prim(P, k);
|
|
}
|
|
else
|
|
{ type = glp_get_col_type(P, k-m);
|
|
lb = glp_get_col_lb(P, k-m);
|
|
ub = glp_get_col_ub(P, k-m);
|
|
stat = glp_get_col_stat(P, k-m);
|
|
beta = glp_get_col_prim(P, k-m);
|
|
}
|
|
if (stat != GLP_BS)
|
|
xerror("glp_prim_rtest: ind[%d] = %d; non-basic variable no"
|
|
"t allowed\n", t, k);
|
|
/* determine influence coefficient at basic variable xB[i]
|
|
in the explicitly specified column and turn to the case of
|
|
increasing the variable x in order to simplify the program
|
|
logic */
|
|
alfa = (dir > 0 ? + val[t] : - val[t]);
|
|
/* analyze main cases */
|
|
if (type == GLP_FR)
|
|
{ /* xB[i] is free variable */
|
|
continue;
|
|
}
|
|
else if (type == GLP_LO)
|
|
lo: { /* xB[i] has an lower bound */
|
|
if (alfa > - eps) continue;
|
|
temp = (lb - beta) / alfa;
|
|
}
|
|
else if (type == GLP_UP)
|
|
up: { /* xB[i] has an upper bound */
|
|
if (alfa < + eps) continue;
|
|
temp = (ub - beta) / alfa;
|
|
}
|
|
else if (type == GLP_DB)
|
|
{ /* xB[i] has both lower and upper bounds */
|
|
if (alfa < 0.0) goto lo; else goto up;
|
|
}
|
|
else if (type == GLP_FX)
|
|
{ /* xB[i] is fixed variable */
|
|
if (- eps < alfa && alfa < + eps) continue;
|
|
temp = 0.0;
|
|
}
|
|
else
|
|
xassert(type != type);
|
|
/* if the value of the variable xB[i] violates its lower or
|
|
upper bound (slightly, because the current basis is assumed
|
|
to be primal feasible), temp is negative; we can think this
|
|
happens due to round-off errors and the value is exactly on
|
|
the bound; this allows replacing temp by zero */
|
|
if (temp < 0.0) temp = 0.0;
|
|
/* apply the minimal ratio test */
|
|
if (teta > temp || teta == temp && big < fabs(alfa))
|
|
piv = t, teta = temp, big = fabs(alfa);
|
|
}
|
|
/* return index of the pivot element chosen */
|
|
return piv;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_dual_rtest - perform dual ratio test
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_dual_rtest(glp_prob *P, int len, const int ind[],
|
|
* const double val[], int dir, double eps);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_dual_rtest performs the dual ratio test using an
|
|
* explicitly specified row of the simplex table.
|
|
*
|
|
* The current basic solution associated with the LP problem object
|
|
* must be dual feasible.
|
|
*
|
|
* The explicitly specified row of the simplex table is a linear form
|
|
* that shows how some basic variable x (which is not necessarily
|
|
* presented in the problem object) depends on non-basic variables xN:
|
|
*
|
|
* x = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n]. (*)
|
|
*
|
|
* The row (*) is specified on entry to the routine using the sparse
|
|
* format. Ordinal numbers of non-basic variables xN[j] should be placed
|
|
* in locations ind[1], ..., ind[len], where ordinal numbers 1 to m
|
|
* denote auxiliary variables, and ordinal numbers m+1 to m+n denote
|
|
* structural variables. The corresponding non-zero coefficients alfa[j]
|
|
* should be placed in locations val[1], ..., val[len]. The arrays ind
|
|
* and val are not changed on exit.
|
|
*
|
|
* The parameter dir specifies direction in which the variable x changes
|
|
* on leaving the basis: +1 means that x goes to its lower bound, and -1
|
|
* means that x goes to its upper bound.
|
|
*
|
|
* The parameter eps is an absolute tolerance (small positive number)
|
|
* used by the routine to skip small alfa[j] of the row (*).
|
|
*
|
|
* The routine determines which non-basic variable (among specified in
|
|
* ind[1], ..., ind[len]) should enter the basis in order to keep dual
|
|
* feasibility.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* The routine glp_dual_rtest returns the index piv in the arrays ind
|
|
* and val corresponding to the pivot element chosen, 1 <= piv <= len.
|
|
* If the adjacent basic solution is dual unbounded and therefore the
|
|
* choice cannot be made, the routine returns zero.
|
|
*
|
|
* COMMENTS
|
|
*
|
|
* If the basic variable x is presented in the LP problem object, the
|
|
* row (*) can be computed with the routine glp_eval_tab_row; otherwise
|
|
* it can be computed with the routine glp_transform_row. */
|
|
|
|
int glp_dual_rtest(glp_prob *P, int len, const int ind[],
|
|
const double val[], int dir, double eps)
|
|
{ int k, m, n, piv, t, stat;
|
|
double alfa, big, cost, obj, temp, teta;
|
|
if (glp_get_dual_stat(P) != GLP_FEAS)
|
|
xerror("glp_dual_rtest: basic solution is not dual feasible\n")
|
|
;
|
|
if (!(dir == +1 || dir == -1))
|
|
xerror("glp_dual_rtest: dir = %d; invalid parameter\n", dir);
|
|
if (!(0.0 < eps && eps < 1.0))
|
|
xerror("glp_dual_rtest: eps = %g; invalid parameter\n", eps);
|
|
m = glp_get_num_rows(P);
|
|
n = glp_get_num_cols(P);
|
|
/* take into account optimization direction */
|
|
obj = (glp_get_obj_dir(P) == GLP_MIN ? +1.0 : -1.0);
|
|
/* initial settings */
|
|
piv = 0, teta = DBL_MAX, big = 0.0;
|
|
/* walk through the entries of the specified row */
|
|
for (t = 1; t <= len; t++)
|
|
{ /* get ordinal number of non-basic variable */
|
|
k = ind[t];
|
|
if (!(1 <= k && k <= m+n))
|
|
xerror("glp_dual_rtest: ind[%d] = %d; variable number out o"
|
|
"f range\n", t, k);
|
|
/* determine status and reduced cost of non-basic variable
|
|
x[k] = xN[j] in the current basic solution */
|
|
if (k <= m)
|
|
{ stat = glp_get_row_stat(P, k);
|
|
cost = glp_get_row_dual(P, k);
|
|
}
|
|
else
|
|
{ stat = glp_get_col_stat(P, k-m);
|
|
cost = glp_get_col_dual(P, k-m);
|
|
}
|
|
if (stat == GLP_BS)
|
|
xerror("glp_dual_rtest: ind[%d] = %d; basic variable not al"
|
|
"lowed\n", t, k);
|
|
/* determine influence coefficient at non-basic variable xN[j]
|
|
in the explicitly specified row and turn to the case of
|
|
increasing the variable x in order to simplify the program
|
|
logic */
|
|
alfa = (dir > 0 ? + val[t] : - val[t]);
|
|
/* analyze main cases */
|
|
if (stat == GLP_NL)
|
|
{ /* xN[j] is on its lower bound */
|
|
if (alfa < + eps) continue;
|
|
temp = (obj * cost) / alfa;
|
|
}
|
|
else if (stat == GLP_NU)
|
|
{ /* xN[j] is on its upper bound */
|
|
if (alfa > - eps) continue;
|
|
temp = (obj * cost) / alfa;
|
|
}
|
|
else if (stat == GLP_NF)
|
|
{ /* xN[j] is non-basic free variable */
|
|
if (- eps < alfa && alfa < + eps) continue;
|
|
temp = 0.0;
|
|
}
|
|
else if (stat == GLP_NS)
|
|
{ /* xN[j] is non-basic fixed variable */
|
|
continue;
|
|
}
|
|
else
|
|
xassert(stat != stat);
|
|
/* if the reduced cost of the variable xN[j] violates its zero
|
|
bound (slightly, because the current basis is assumed to be
|
|
dual feasible), temp is negative; we can think this happens
|
|
due to round-off errors and the reduced cost is exact zero;
|
|
this allows replacing temp by zero */
|
|
if (temp < 0.0) temp = 0.0;
|
|
/* apply the minimal ratio test */
|
|
if (teta > temp || teta == temp && big < fabs(alfa))
|
|
piv = t, teta = temp, big = fabs(alfa);
|
|
}
|
|
/* return index of the pivot element chosen */
|
|
return piv;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_analyze_row - simulate one iteration of dual simplex method
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* int glp_analyze_row(glp_prob *P, int len, const int ind[],
|
|
* const double val[], int type, double rhs, double eps, int *piv,
|
|
* double *x, double *dx, double *y, double *dy, double *dz);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* Let the current basis be optimal or dual feasible, and there be
|
|
* specified a row (constraint), which is violated by the current basic
|
|
* solution. The routine glp_analyze_row simulates one iteration of the
|
|
* dual simplex method to determine some information on the adjacent
|
|
* basis (see below), where the specified row becomes active constraint
|
|
* (i.e. its auxiliary variable becomes non-basic).
|
|
*
|
|
* The current basic solution associated with the problem object passed
|
|
* to the routine must be dual feasible, and its primal components must
|
|
* be defined.
|
|
*
|
|
* The row to be analyzed must be previously transformed either with
|
|
* the routine glp_eval_tab_row (if the row is in the problem object)
|
|
* or with the routine glp_transform_row (if the row is external, i.e.
|
|
* not in the problem object). This is needed to express the row only
|
|
* through (auxiliary and structural) variables, which are non-basic in
|
|
* the current basis:
|
|
*
|
|
* y = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n],
|
|
*
|
|
* where y is an auxiliary variable of the row, alfa[j] is an influence
|
|
* coefficient, xN[j] is a non-basic variable.
|
|
*
|
|
* The row is passed to the routine in sparse format. Ordinal numbers
|
|
* of non-basic variables are stored in locations ind[1], ..., ind[len],
|
|
* where numbers 1 to m denote auxiliary variables while numbers m+1 to
|
|
* m+n denote structural variables. Corresponding non-zero coefficients
|
|
* alfa[j] are stored in locations val[1], ..., val[len]. The arrays
|
|
* ind and val are ot changed on exit.
|
|
*
|
|
* The parameters type and rhs specify the row type and its right-hand
|
|
* side as follows:
|
|
*
|
|
* type = GLP_LO: y = sum alfa[j] * xN[j] >= rhs
|
|
*
|
|
* type = GLP_UP: y = sum alfa[j] * xN[j] <= rhs
|
|
*
|
|
* The parameter eps is an absolute tolerance (small positive number)
|
|
* used by the routine to skip small coefficients alfa[j] on performing
|
|
* the dual ratio test.
|
|
*
|
|
* If the operation was successful, the routine stores the following
|
|
* information to corresponding location (if some parameter is NULL,
|
|
* its value is not stored):
|
|
*
|
|
* piv index in the array ind and val, 1 <= piv <= len, determining
|
|
* the non-basic variable, which would enter the adjacent basis;
|
|
*
|
|
* x value of the non-basic variable in the current basis;
|
|
*
|
|
* dx difference between values of the non-basic variable in the
|
|
* adjacent and current bases, dx = x.new - x.old;
|
|
*
|
|
* y value of the row (i.e. of its auxiliary variable) in the
|
|
* current basis;
|
|
*
|
|
* dy difference between values of the row in the adjacent and
|
|
* current bases, dy = y.new - y.old;
|
|
*
|
|
* dz difference between values of the objective function in the
|
|
* adjacent and current bases, dz = z.new - z.old. Note that in
|
|
* case of minimization dz >= 0, and in case of maximization
|
|
* dz <= 0, i.e. in the adjacent basis the objective function
|
|
* always gets worse (degrades). */
|
|
|
|
int _glp_analyze_row(glp_prob *P, int len, const int ind[],
|
|
const double val[], int type, double rhs, double eps, int *_piv,
|
|
double *_x, double *_dx, double *_y, double *_dy, double *_dz)
|
|
{ int t, k, dir, piv, ret = 0;
|
|
double x, dx, y, dy, dz;
|
|
if (P->pbs_stat == GLP_UNDEF)
|
|
xerror("glp_analyze_row: primal basic solution components are "
|
|
"undefined\n");
|
|
if (P->dbs_stat != GLP_FEAS)
|
|
xerror("glp_analyze_row: basic solution is not dual feasible\n"
|
|
);
|
|
/* compute the row value y = sum alfa[j] * xN[j] in the current
|
|
basis */
|
|
if (!(0 <= len && len <= P->n))
|
|
xerror("glp_analyze_row: len = %d; invalid row length\n", len);
|
|
y = 0.0;
|
|
for (t = 1; t <= len; t++)
|
|
{ /* determine value of x[k] = xN[j] in the current basis */
|
|
k = ind[t];
|
|
if (!(1 <= k && k <= P->m+P->n))
|
|
xerror("glp_analyze_row: ind[%d] = %d; row/column index out"
|
|
" of range\n", t, k);
|
|
if (k <= P->m)
|
|
{ /* x[k] is auxiliary variable */
|
|
if (P->row[k]->stat == GLP_BS)
|
|
xerror("glp_analyze_row: ind[%d] = %d; basic auxiliary v"
|
|
"ariable is not allowed\n", t, k);
|
|
x = P->row[k]->prim;
|
|
}
|
|
else
|
|
{ /* x[k] is structural variable */
|
|
if (P->col[k-P->m]->stat == GLP_BS)
|
|
xerror("glp_analyze_row: ind[%d] = %d; basic structural "
|
|
"variable is not allowed\n", t, k);
|
|
x = P->col[k-P->m]->prim;
|
|
}
|
|
y += val[t] * x;
|
|
}
|
|
/* check if the row is primal infeasible in the current basis,
|
|
i.e. the constraint is violated at the current point */
|
|
if (type == GLP_LO)
|
|
{ if (y >= rhs)
|
|
{ /* the constraint is not violated */
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
/* in the adjacent basis y goes to its lower bound */
|
|
dir = +1;
|
|
}
|
|
else if (type == GLP_UP)
|
|
{ if (y <= rhs)
|
|
{ /* the constraint is not violated */
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
/* in the adjacent basis y goes to its upper bound */
|
|
dir = -1;
|
|
}
|
|
else
|
|
xerror("glp_analyze_row: type = %d; invalid parameter\n",
|
|
type);
|
|
/* compute dy = y.new - y.old */
|
|
dy = rhs - y;
|
|
/* perform dual ratio test to determine which non-basic variable
|
|
should enter the adjacent basis to keep it dual feasible */
|
|
piv = glp_dual_rtest(P, len, ind, val, dir, eps);
|
|
if (piv == 0)
|
|
{ /* no dual feasible adjacent basis exists */
|
|
ret = 2;
|
|
goto done;
|
|
}
|
|
/* non-basic variable x[k] = xN[j] should enter the basis */
|
|
k = ind[piv];
|
|
xassert(1 <= k && k <= P->m+P->n);
|
|
/* determine its value in the current basis */
|
|
if (k <= P->m)
|
|
x = P->row[k]->prim;
|
|
else
|
|
x = P->col[k-P->m]->prim;
|
|
/* compute dx = x.new - x.old = dy / alfa[j] */
|
|
xassert(val[piv] != 0.0);
|
|
dx = dy / val[piv];
|
|
/* compute dz = z.new - z.old = d[j] * dx, where d[j] is reduced
|
|
cost of xN[j] in the current basis */
|
|
if (k <= P->m)
|
|
dz = P->row[k]->dual * dx;
|
|
else
|
|
dz = P->col[k-P->m]->dual * dx;
|
|
/* store the analysis results */
|
|
if (_piv != NULL) *_piv = piv;
|
|
if (_x != NULL) *_x = x;
|
|
if (_dx != NULL) *_dx = dx;
|
|
if (_y != NULL) *_y = y;
|
|
if (_dy != NULL) *_dy = dy;
|
|
if (_dz != NULL) *_dz = dz;
|
|
done: return ret;
|
|
}
|
|
|
|
#if 0
|
|
int main(void)
|
|
{ /* example program for the routine glp_analyze_row */
|
|
glp_prob *P;
|
|
glp_smcp parm;
|
|
int i, k, len, piv, ret, ind[1+100];
|
|
double rhs, x, dx, y, dy, dz, val[1+100];
|
|
P = glp_create_prob();
|
|
/* read plan.mps (see glpk/examples) */
|
|
ret = glp_read_mps(P, GLP_MPS_DECK, NULL, "plan.mps");
|
|
glp_assert(ret == 0);
|
|
/* and solve it to optimality */
|
|
ret = glp_simplex(P, NULL);
|
|
glp_assert(ret == 0);
|
|
glp_assert(glp_get_status(P) == GLP_OPT);
|
|
/* the optimal objective value is 296.217 */
|
|
/* we would like to know what happens if we would add a new row
|
|
(constraint) to plan.mps:
|
|
.01 * bin1 + .01 * bin2 + .02 * bin4 + .02 * bin5 <= 12 */
|
|
/* first, we specify this new row */
|
|
glp_create_index(P);
|
|
len = 0;
|
|
ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01;
|
|
ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01;
|
|
ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02;
|
|
ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02;
|
|
rhs = 12;
|
|
/* then we can compute value of the row (i.e. of its auxiliary
|
|
variable) in the current basis to see if the constraint is
|
|
violated */
|
|
y = 0.0;
|
|
for (k = 1; k <= len; k++)
|
|
y += val[k] * glp_get_col_prim(P, ind[k]);
|
|
glp_printf("y = %g\n", y);
|
|
/* this prints y = 15.1372, so the constraint is violated, since
|
|
we require that y <= rhs = 12 */
|
|
/* now we transform the row to express it only through non-basic
|
|
(auxiliary and artificial) variables */
|
|
len = glp_transform_row(P, len, ind, val);
|
|
/* finally, we simulate one step of the dual simplex method to
|
|
obtain necessary information for the adjacent basis */
|
|
ret = _glp_analyze_row(P, len, ind, val, GLP_UP, rhs, 1e-9, &piv,
|
|
&x, &dx, &y, &dy, &dz);
|
|
glp_assert(ret == 0);
|
|
glp_printf("k = %d, x = %g; dx = %g; y = %g; dy = %g; dz = %g\n",
|
|
ind[piv], x, dx, y, dy, dz);
|
|
/* this prints dz = 5.64418 and means that in the adjacent basis
|
|
the objective function would be 296.217 + 5.64418 = 301.861 */
|
|
/* now we actually include the row into the problem object; note
|
|
that the arrays ind and val are clobbered, so we need to build
|
|
them once again */
|
|
len = 0;
|
|
ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01;
|
|
ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01;
|
|
ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02;
|
|
ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02;
|
|
rhs = 12;
|
|
i = glp_add_rows(P, 1);
|
|
glp_set_row_bnds(P, i, GLP_UP, 0, rhs);
|
|
glp_set_mat_row(P, i, len, ind, val);
|
|
/* and perform one dual simplex iteration */
|
|
glp_init_smcp(&parm);
|
|
parm.meth = GLP_DUAL;
|
|
parm.it_lim = 1;
|
|
glp_simplex(P, &parm);
|
|
/* the current objective value is 301.861 */
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_analyze_bound - analyze active bound of non-basic variable
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* void glp_analyze_bound(glp_prob *P, int k, double *limit1, int *var1,
|
|
* double *limit2, int *var2);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_analyze_bound analyzes the effect of varying the
|
|
* active bound of specified non-basic variable.
|
|
*
|
|
* The non-basic variable is specified by the parameter k, where
|
|
* 1 <= k <= m means auxiliary variable of corresponding row while
|
|
* m+1 <= k <= m+n means structural variable (column).
|
|
*
|
|
* Note that the current basic solution must be optimal, and the basis
|
|
* factorization must exist.
|
|
*
|
|
* Results of the analysis have the following meaning.
|
|
*
|
|
* value1 is the minimal value of the active bound, at which the basis
|
|
* still remains primal feasible and thus optimal. -DBL_MAX means that
|
|
* the active bound has no lower limit.
|
|
*
|
|
* var1 is the ordinal number of an auxiliary (1 to m) or structural
|
|
* (m+1 to n) basic variable, which reaches its bound first and thereby
|
|
* limits further decreasing the active bound being analyzed.
|
|
* if value1 = -DBL_MAX, var1 is set to 0.
|
|
*
|
|
* value2 is the maximal value of the active bound, at which the basis
|
|
* still remains primal feasible and thus optimal. +DBL_MAX means that
|
|
* the active bound has no upper limit.
|
|
*
|
|
* var2 is the ordinal number of an auxiliary (1 to m) or structural
|
|
* (m+1 to n) basic variable, which reaches its bound first and thereby
|
|
* limits further increasing the active bound being analyzed.
|
|
* if value2 = +DBL_MAX, var2 is set to 0. */
|
|
|
|
void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1,
|
|
double *value2, int *var2)
|
|
{ GLPROW *row;
|
|
GLPCOL *col;
|
|
int m, n, stat, kase, p, len, piv, *ind;
|
|
double x, new_x, ll, uu, xx, delta, *val;
|
|
/* sanity checks */
|
|
if (P == NULL || P->magic != GLP_PROB_MAGIC)
|
|
xerror("glp_analyze_bound: P = %p; invalid problem object\n",
|
|
P);
|
|
m = P->m, n = P->n;
|
|
if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS))
|
|
xerror("glp_analyze_bound: optimal basic solution required\n");
|
|
if (!(m == 0 || P->valid))
|
|
xerror("glp_analyze_bound: basis factorization required\n");
|
|
if (!(1 <= k && k <= m+n))
|
|
xerror("glp_analyze_bound: k = %d; variable number out of rang"
|
|
"e\n", k);
|
|
/* retrieve information about the specified non-basic variable
|
|
x[k] whose active bound is to be analyzed */
|
|
if (k <= m)
|
|
{ row = P->row[k];
|
|
stat = row->stat;
|
|
x = row->prim;
|
|
}
|
|
else
|
|
{ col = P->col[k-m];
|
|
stat = col->stat;
|
|
x = col->prim;
|
|
}
|
|
if (stat == GLP_BS)
|
|
xerror("glp_analyze_bound: k = %d; basic variable not allowed "
|
|
"\n", k);
|
|
/* allocate working arrays */
|
|
ind = xcalloc(1+m, sizeof(int));
|
|
val = xcalloc(1+m, sizeof(double));
|
|
/* compute column of the simplex table corresponding to the
|
|
non-basic variable x[k] */
|
|
len = glp_eval_tab_col(P, k, ind, val);
|
|
xassert(0 <= len && len <= m);
|
|
/* perform analysis */
|
|
for (kase = -1; kase <= +1; kase += 2)
|
|
{ /* kase < 0 means active bound of x[k] is decreasing;
|
|
kase > 0 means active bound of x[k] is increasing */
|
|
/* use the primal ratio test to determine some basic variable
|
|
x[p] which reaches its bound first */
|
|
piv = glp_prim_rtest(P, len, ind, val, kase, 1e-9);
|
|
if (piv == 0)
|
|
{ /* nothing limits changing the active bound of x[k] */
|
|
p = 0;
|
|
new_x = (kase < 0 ? -DBL_MAX : +DBL_MAX);
|
|
goto store;
|
|
}
|
|
/* basic variable x[p] limits changing the active bound of
|
|
x[k]; determine its value in the current basis */
|
|
xassert(1 <= piv && piv <= len);
|
|
p = ind[piv];
|
|
if (p <= m)
|
|
{ row = P->row[p];
|
|
ll = glp_get_row_lb(P, row->i);
|
|
uu = glp_get_row_ub(P, row->i);
|
|
stat = row->stat;
|
|
xx = row->prim;
|
|
}
|
|
else
|
|
{ col = P->col[p-m];
|
|
ll = glp_get_col_lb(P, col->j);
|
|
uu = glp_get_col_ub(P, col->j);
|
|
stat = col->stat;
|
|
xx = col->prim;
|
|
}
|
|
xassert(stat == GLP_BS);
|
|
/* determine delta x[p] = bound of x[p] - value of x[p] */
|
|
if (kase < 0 && val[piv] > 0.0 ||
|
|
kase > 0 && val[piv] < 0.0)
|
|
{ /* delta x[p] < 0, so x[p] goes toward its lower bound */
|
|
xassert(ll != -DBL_MAX);
|
|
delta = ll - xx;
|
|
}
|
|
else
|
|
{ /* delta x[p] > 0, so x[p] goes toward its upper bound */
|
|
xassert(uu != +DBL_MAX);
|
|
delta = uu - xx;
|
|
}
|
|
/* delta x[p] = alfa[p,k] * delta x[k], so new x[k] = x[k] +
|
|
delta x[k] = x[k] + delta x[p] / alfa[p,k] is the value of
|
|
x[k] in the adjacent basis */
|
|
xassert(val[piv] != 0.0);
|
|
new_x = x + delta / val[piv];
|
|
store: /* store analysis results */
|
|
if (kase < 0)
|
|
{ if (value1 != NULL) *value1 = new_x;
|
|
if (var1 != NULL) *var1 = p;
|
|
}
|
|
else
|
|
{ if (value2 != NULL) *value2 = new_x;
|
|
if (var2 != NULL) *var2 = p;
|
|
}
|
|
}
|
|
/* free working arrays */
|
|
xfree(ind);
|
|
xfree(val);
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* glp_analyze_coef - analyze objective coefficient at basic variable
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
|
|
* double *value1, double *coef2, int *var2, double *value2);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine glp_analyze_coef analyzes the effect of varying the
|
|
* objective coefficient at specified basic variable.
|
|
*
|
|
* The basic variable is specified by the parameter k, where
|
|
* 1 <= k <= m means auxiliary variable of corresponding row while
|
|
* m+1 <= k <= m+n means structural variable (column).
|
|
*
|
|
* Note that the current basic solution must be optimal, and the basis
|
|
* factorization must exist.
|
|
*
|
|
* Results of the analysis have the following meaning.
|
|
*
|
|
* coef1 is the minimal value of the objective coefficient, at which
|
|
* the basis still remains dual feasible and thus optimal. -DBL_MAX
|
|
* means that the objective coefficient has no lower limit.
|
|
*
|
|
* var1 is the ordinal number of an auxiliary (1 to m) or structural
|
|
* (m+1 to n) non-basic variable, whose reduced cost reaches its zero
|
|
* bound first and thereby limits further decreasing the objective
|
|
* coefficient being analyzed. If coef1 = -DBL_MAX, var1 is set to 0.
|
|
*
|
|
* value1 is value of the basic variable being analyzed in an adjacent
|
|
* basis, which is defined as follows. Let the objective coefficient
|
|
* reaches its minimal value (coef1) and continues decreasing. Then the
|
|
* reduced cost of the limiting non-basic variable (var1) becomes dual
|
|
* infeasible and the current basis becomes non-optimal that forces the
|
|
* limiting non-basic variable to enter the basis replacing there some
|
|
* basic variable that leaves the basis to keep primal feasibility.
|
|
* Should note that on determining the adjacent basis current bounds
|
|
* of the basic variable being analyzed are ignored as if it were free
|
|
* (unbounded) variable, so it cannot leave the basis. It may happen
|
|
* that no dual feasible adjacent basis exists, in which case value1 is
|
|
* set to -DBL_MAX or +DBL_MAX.
|
|
*
|
|
* coef2 is the maximal value of the objective coefficient, at which
|
|
* the basis still remains dual feasible and thus optimal. +DBL_MAX
|
|
* means that the objective coefficient has no upper limit.
|
|
*
|
|
* var2 is the ordinal number of an auxiliary (1 to m) or structural
|
|
* (m+1 to n) non-basic variable, whose reduced cost reaches its zero
|
|
* bound first and thereby limits further increasing the objective
|
|
* coefficient being analyzed. If coef2 = +DBL_MAX, var2 is set to 0.
|
|
*
|
|
* value2 is value of the basic variable being analyzed in an adjacent
|
|
* basis, which is defined exactly in the same way as value1 above with
|
|
* exception that now the objective coefficient is increasing. */
|
|
|
|
void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
|
|
double *value1, double *coef2, int *var2, double *value2)
|
|
{ GLPROW *row; GLPCOL *col;
|
|
int m, n, type, stat, kase, p, q, dir, clen, cpiv, rlen, rpiv,
|
|
*cind, *rind;
|
|
double lb, ub, coef, x, lim_coef, new_x, d, delta, ll, uu, xx,
|
|
*rval, *cval;
|
|
/* sanity checks */
|
|
if (P == NULL || P->magic != GLP_PROB_MAGIC)
|
|
xerror("glp_analyze_coef: P = %p; invalid problem object\n",
|
|
P);
|
|
m = P->m, n = P->n;
|
|
if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS))
|
|
xerror("glp_analyze_coef: optimal basic solution required\n");
|
|
if (!(m == 0 || P->valid))
|
|
xerror("glp_analyze_coef: basis factorization required\n");
|
|
if (!(1 <= k && k <= m+n))
|
|
xerror("glp_analyze_coef: k = %d; variable number out of range"
|
|
"\n", k);
|
|
/* retrieve information about the specified basic variable x[k]
|
|
whose objective coefficient c[k] is to be analyzed */
|
|
if (k <= m)
|
|
{ row = P->row[k];
|
|
type = row->type;
|
|
lb = row->lb;
|
|
ub = row->ub;
|
|
coef = 0.0;
|
|
stat = row->stat;
|
|
x = row->prim;
|
|
}
|
|
else
|
|
{ col = P->col[k-m];
|
|
type = col->type;
|
|
lb = col->lb;
|
|
ub = col->ub;
|
|
coef = col->coef;
|
|
stat = col->stat;
|
|
x = col->prim;
|
|
}
|
|
if (stat != GLP_BS)
|
|
xerror("glp_analyze_coef: k = %d; non-basic variable not allow"
|
|
"ed\n", k);
|
|
/* allocate working arrays */
|
|
cind = xcalloc(1+m, sizeof(int));
|
|
cval = xcalloc(1+m, sizeof(double));
|
|
rind = xcalloc(1+n, sizeof(int));
|
|
rval = xcalloc(1+n, sizeof(double));
|
|
/* compute row of the simplex table corresponding to the basic
|
|
variable x[k] */
|
|
rlen = glp_eval_tab_row(P, k, rind, rval);
|
|
xassert(0 <= rlen && rlen <= n);
|
|
/* perform analysis */
|
|
for (kase = -1; kase <= +1; kase += 2)
|
|
{ /* kase < 0 means objective coefficient c[k] is decreasing;
|
|
kase > 0 means objective coefficient c[k] is increasing */
|
|
/* note that decreasing c[k] is equivalent to increasing dual
|
|
variable lambda[k] and vice versa; we need to correctly set
|
|
the dir flag as required by the routine glp_dual_rtest */
|
|
if (P->dir == GLP_MIN)
|
|
dir = - kase;
|
|
else if (P->dir == GLP_MAX)
|
|
dir = + kase;
|
|
else
|
|
xassert(P != P);
|
|
/* use the dual ratio test to determine non-basic variable
|
|
x[q] whose reduced cost d[q] reaches zero bound first */
|
|
rpiv = glp_dual_rtest(P, rlen, rind, rval, dir, 1e-9);
|
|
if (rpiv == 0)
|
|
{ /* nothing limits changing c[k] */
|
|
lim_coef = (kase < 0 ? -DBL_MAX : +DBL_MAX);
|
|
q = 0;
|
|
/* x[k] keeps its current value */
|
|
new_x = x;
|
|
goto store;
|
|
}
|
|
/* non-basic variable x[q] limits changing coefficient c[k];
|
|
determine its status and reduced cost d[k] in the current
|
|
basis */
|
|
xassert(1 <= rpiv && rpiv <= rlen);
|
|
q = rind[rpiv];
|
|
xassert(1 <= q && q <= m+n);
|
|
if (q <= m)
|
|
{ row = P->row[q];
|
|
stat = row->stat;
|
|
d = row->dual;
|
|
}
|
|
else
|
|
{ col = P->col[q-m];
|
|
stat = col->stat;
|
|
d = col->dual;
|
|
}
|
|
/* note that delta d[q] = new d[q] - d[q] = - d[q], because
|
|
new d[q] = 0; delta d[q] = alfa[k,q] * delta c[k], so
|
|
delta c[k] = delta d[q] / alfa[k,q] = - d[q] / alfa[k,q] */
|
|
xassert(rval[rpiv] != 0.0);
|
|
delta = - d / rval[rpiv];
|
|
/* compute new c[k] = c[k] + delta c[k], which is the limiting
|
|
value of the objective coefficient c[k] */
|
|
lim_coef = coef + delta;
|
|
/* let c[k] continue decreasing/increasing that makes d[q]
|
|
dual infeasible and forces x[q] to enter the basis;
|
|
to perform the primal ratio test we need to know in which
|
|
direction x[q] changes on entering the basis; we determine
|
|
that analyzing the sign of delta d[q] (see above), since
|
|
d[q] may be close to zero having wrong sign */
|
|
/* let, for simplicity, the problem is minimization */
|
|
if (kase < 0 && rval[rpiv] > 0.0 ||
|
|
kase > 0 && rval[rpiv] < 0.0)
|
|
{ /* delta d[q] < 0, so d[q] being non-negative will become
|
|
negative, so x[q] will increase */
|
|
dir = +1;
|
|
}
|
|
else
|
|
{ /* delta d[q] > 0, so d[q] being non-positive will become
|
|
positive, so x[q] will decrease */
|
|
dir = -1;
|
|
}
|
|
/* if the problem is maximization, correct the direction */
|
|
if (P->dir == GLP_MAX) dir = - dir;
|
|
/* check that we didn't make a silly mistake */
|
|
if (dir > 0)
|
|
xassert(stat == GLP_NL || stat == GLP_NF);
|
|
else
|
|
xassert(stat == GLP_NU || stat == GLP_NF);
|
|
/* compute column of the simplex table corresponding to the
|
|
non-basic variable x[q] */
|
|
clen = glp_eval_tab_col(P, q, cind, cval);
|
|
/* make x[k] temporarily free (unbounded) */
|
|
if (k <= m)
|
|
{ row = P->row[k];
|
|
row->type = GLP_FR;
|
|
row->lb = row->ub = 0.0;
|
|
}
|
|
else
|
|
{ col = P->col[k-m];
|
|
col->type = GLP_FR;
|
|
col->lb = col->ub = 0.0;
|
|
}
|
|
/* use the primal ratio test to determine some basic variable
|
|
which leaves the basis */
|
|
cpiv = glp_prim_rtest(P, clen, cind, cval, dir, 1e-9);
|
|
/* restore original bounds of the basic variable x[k] */
|
|
if (k <= m)
|
|
{ row = P->row[k];
|
|
row->type = type;
|
|
row->lb = lb, row->ub = ub;
|
|
}
|
|
else
|
|
{ col = P->col[k-m];
|
|
col->type = type;
|
|
col->lb = lb, col->ub = ub;
|
|
}
|
|
if (cpiv == 0)
|
|
{ /* non-basic variable x[q] can change unlimitedly */
|
|
if (dir < 0 && rval[rpiv] > 0.0 ||
|
|
dir > 0 && rval[rpiv] < 0.0)
|
|
{ /* delta x[k] = alfa[k,q] * delta x[q] < 0 */
|
|
new_x = -DBL_MAX;
|
|
}
|
|
else
|
|
{ /* delta x[k] = alfa[k,q] * delta x[q] > 0 */
|
|
new_x = +DBL_MAX;
|
|
}
|
|
goto store;
|
|
}
|
|
/* some basic variable x[p] limits changing non-basic variable
|
|
x[q] in the adjacent basis */
|
|
xassert(1 <= cpiv && cpiv <= clen);
|
|
p = cind[cpiv];
|
|
xassert(1 <= p && p <= m+n);
|
|
xassert(p != k);
|
|
if (p <= m)
|
|
{ row = P->row[p];
|
|
xassert(row->stat == GLP_BS);
|
|
ll = glp_get_row_lb(P, row->i);
|
|
uu = glp_get_row_ub(P, row->i);
|
|
xx = row->prim;
|
|
}
|
|
else
|
|
{ col = P->col[p-m];
|
|
xassert(col->stat == GLP_BS);
|
|
ll = glp_get_col_lb(P, col->j);
|
|
uu = glp_get_col_ub(P, col->j);
|
|
xx = col->prim;
|
|
}
|
|
/* determine delta x[p] = new x[p] - x[p] */
|
|
if (dir < 0 && cval[cpiv] > 0.0 ||
|
|
dir > 0 && cval[cpiv] < 0.0)
|
|
{ /* delta x[p] < 0, so x[p] goes toward its lower bound */
|
|
xassert(ll != -DBL_MAX);
|
|
delta = ll - xx;
|
|
}
|
|
else
|
|
{ /* delta x[p] > 0, so x[p] goes toward its upper bound */
|
|
xassert(uu != +DBL_MAX);
|
|
delta = uu - xx;
|
|
}
|
|
/* compute new x[k] = x[k] + alfa[k,q] * delta x[q], where
|
|
delta x[q] = delta x[p] / alfa[p,q] */
|
|
xassert(cval[cpiv] != 0.0);
|
|
new_x = x + (rval[rpiv] / cval[cpiv]) * delta;
|
|
store: /* store analysis results */
|
|
if (kase < 0)
|
|
{ if (coef1 != NULL) *coef1 = lim_coef;
|
|
if (var1 != NULL) *var1 = q;
|
|
if (value1 != NULL) *value1 = new_x;
|
|
}
|
|
else
|
|
{ if (coef2 != NULL) *coef2 = lim_coef;
|
|
if (var2 != NULL) *var2 = q;
|
|
if (value2 != NULL) *value2 = new_x;
|
|
}
|
|
}
|
|
/* free working arrays */
|
|
xfree(cind);
|
|
xfree(cval);
|
|
xfree(rind);
|
|
xfree(rval);
|
|
return;
|
|
}
|
|
|
|
/* eof */
|