You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

698 lines
37 KiB

#include "test/storm_gtest.h"
#include "storm-config.h"
#include "storm/api/builder.h"
#include "storm-conv/api/storm-conv.h"
#include "storm-parsers/api/model_descriptions.h"
#include "storm/api/properties.h"
#include "storm-parsers/api/properties.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/symbolic/Mdp.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/models/symbolic/StandardRewardModel.h"
#include "storm/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
#include "storm/modelchecker/prctl/HybridMdpPrctlModelChecker.h"
#include "storm/modelchecker/prctl/SymbolicMdpPrctlModelChecker.h"
#include "storm/modelchecker/results/QuantitativeCheckResult.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "storm/modelchecker/results/QualitativeCheckResult.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/environment/solver/TopologicalSolverEnvironment.h"
#include "storm/environment/solver/MultiplierEnvironment.h"
#include "storm/settings/modules/CoreSettings.h"
#include "storm/logic/Formulas.h"
#include "storm/storage/jani/Property.h"
#include "storm/exceptions/UncheckedRequirementException.h"
namespace {
enum class MdpEngine {PrismSparse, JaniSparse, JitSparse, Hybrid, PrismDd, JaniDd};
class SparseDoubleValueIterationGmmxxGaussSeidelMultEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::GaussSeidel);
env.solver().multiplier().setType(storm::solver::MultiplierType::Gmmxx);
return env;
}
};
class SparseDoubleValueIterationGmmxxRegularMultEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::Regular);
env.solver().multiplier().setType(storm::solver::MultiplierType::Gmmxx);
return env;
}
};
class SparseDoubleValueIterationNativeGaussSeidelMultEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::GaussSeidel);
env.solver().multiplier().setType(storm::solver::MultiplierType::Native);
return env;
}
};
class SparseDoubleValueIterationNativeRegularMultEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::Regular);
env.solver().multiplier().setType(storm::solver::MultiplierType::Native);
return env;
}
};
class JaniSparseDoubleValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::JaniSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class JitSparseDoubleValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::JitSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class SparseDoubleIntervalIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().setForceSoundness(true);
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::IntervalIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-6));
env.solver().minMax().setRelativeTerminationCriterion(false);
return env;
}
};
class SparseDoubleSoundValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().setForceSoundness(true);
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::SoundValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-6));
env.solver().minMax().setRelativeTerminationCriterion(false);
return env;
}
};
class SparseDoubleOptimisticValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().setForceSoundness(true);
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::OptimisticValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-6));
env.solver().minMax().setRelativeTerminationCriterion(false);
return env;
}
};
class SparseDoubleTopologicalValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::Topological);
env.solver().topological().setUnderlyingMinMaxMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-8));
env.solver().minMax().setRelativeTerminationCriterion(false);
return env;
}
};
class SparseDoubleTopologicalSoundValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().setForceSoundness(true);
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::Topological);
env.solver().topological().setUnderlyingMinMaxMethod(storm::solver::MinMaxMethod::SoundValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-6));
env.solver().minMax().setRelativeTerminationCriterion(false);
return env;
}
};
class SparseRationalPolicyIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = true;
typedef storm::RationalNumber ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::PolicyIteration);
return env;
}
};
class SparseRationalViToPiEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = true;
typedef storm::RationalNumber ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ViToPi);
return env;
}
};
class SparseRationalRationalSearchEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan; // Unused for sparse models
static const MdpEngine engine = MdpEngine::PrismSparse;
static const bool isExact = true;
typedef storm::RationalNumber ValueType;
typedef storm::models::sparse::Mdp<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::RationalSearch);
return env;
}
};
class HybridCuddDoubleValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::CUDD;
static const MdpEngine engine = MdpEngine::Hybrid;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class HybridSylvanDoubleValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan;
static const MdpEngine engine = MdpEngine::Hybrid;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class HybridCuddDoubleSoundValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::CUDD;
static const MdpEngine engine = MdpEngine::Hybrid;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().setForceSoundness(true);
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::SoundValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-6));
env.solver().minMax().setRelativeTerminationCriterion(false);
return env;
}
};
class HybridCuddDoubleOptimisticValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::CUDD;
static const MdpEngine engine = MdpEngine::Hybrid;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().setForceSoundness(true);
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::OptimisticValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-6));
env.solver().minMax().setRelativeTerminationCriterion(false);
return env;
}
};
class HybridSylvanRationalPolicyIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan;
static const MdpEngine engine = MdpEngine::Hybrid;
static const bool isExact = true;
typedef storm::RationalNumber ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::PolicyIteration);
return env;
}
};
class DdCuddDoubleValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::CUDD;
static const MdpEngine engine = MdpEngine::PrismDd;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class JaniDdCuddDoubleValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::CUDD;
static const MdpEngine engine = MdpEngine::JaniDd;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class DdSylvanDoubleValueIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan;
static const MdpEngine engine = MdpEngine::PrismDd;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class DdCuddDoublePolicyIterationEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::CUDD;
static const MdpEngine engine = MdpEngine::PrismDd;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::PolicyIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
return env;
}
};
class DdSylvanRationalRationalSearchEnvironment {
public:
static const storm::dd::DdType ddType = storm::dd::DdType::Sylvan;
static const MdpEngine engine = MdpEngine::PrismDd;
static const bool isExact = true;
typedef storm::RationalNumber ValueType;
typedef storm::models::symbolic::Mdp<ddType, ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::RationalSearch);
return env;
}
};
template<typename TestType>
class MdpPrctlModelCheckerTest : public ::testing::Test {
public:
typedef typename TestType::ValueType ValueType;
typedef typename storm::models::sparse::Mdp<ValueType> SparseModelType;
typedef typename storm::models::symbolic::Mdp<TestType::ddType, ValueType> SymbolicModelType;
MdpPrctlModelCheckerTest() : _environment(TestType::createEnvironment()) {}
storm::Environment const& env() const { return _environment; }
ValueType parseNumber(std::string const& input) const { return storm::utility::convertNumber<ValueType>(input);}
ValueType precision() const { return TestType::isExact ? parseNumber("0") : parseNumber("1e-6");}
bool isSparseModel() const { return std::is_same<typename TestType::ModelType, SparseModelType>::value; }
bool isSymbolicModel() const { return std::is_same<typename TestType::ModelType, SymbolicModelType>::value; }
template <typename MT = typename TestType::ModelType>
typename std::enable_if<std::is_same<MT, SparseModelType>::value, std::pair<std::shared_ptr<MT>, std::vector<std::shared_ptr<storm::logic::Formula const>>>>::type
buildModelFormulas(std::string const& pathToPrismFile, std::string const& formulasAsString, std::string const& constantDefinitionString = "") const {
std::pair<std::shared_ptr<MT>, std::vector<std::shared_ptr<storm::logic::Formula const>>> result;
storm::prism::Program program = storm::api::parseProgram(pathToPrismFile);
program = storm::utility::prism::preprocess(program, constantDefinitionString);
if (TestType::engine == MdpEngine::PrismSparse) {
result.second = storm::api::extractFormulasFromProperties(storm::api::parsePropertiesForPrismProgram(formulasAsString, program));
result.first = storm::api::buildSparseModel<ValueType>(program, result.second)->template as<MT>();
} else if (TestType::engine == MdpEngine::JaniSparse || TestType::engine == MdpEngine::JitSparse) {
auto janiData = storm::api::convertPrismToJani(program, storm::api::parsePropertiesForPrismProgram(formulasAsString, program));
janiData.first.substituteFunctions();
result.second = storm::api::extractFormulasFromProperties(janiData.second);
result.first = storm::api::buildSparseModel<ValueType>(janiData.first, result.second, TestType::engine == MdpEngine::JitSparse)->template as<MT>();
}
return result;
}
template <typename MT = typename TestType::ModelType>
typename std::enable_if<std::is_same<MT, SymbolicModelType>::value, std::pair<std::shared_ptr<MT>, std::vector<std::shared_ptr<storm::logic::Formula const>>>>::type
buildModelFormulas(std::string const& pathToPrismFile, std::string const& formulasAsString, std::string const& constantDefinitionString = "") const {
std::pair<std::shared_ptr<MT>, std::vector<std::shared_ptr<storm::logic::Formula const>>> result;
storm::prism::Program program = storm::api::parseProgram(pathToPrismFile);
program = storm::utility::prism::preprocess(program, constantDefinitionString);
if (TestType::engine == MdpEngine::Hybrid || TestType::engine == MdpEngine::PrismDd) {
result.second = storm::api::extractFormulasFromProperties(storm::api::parsePropertiesForPrismProgram(formulasAsString, program));
result.first = storm::api::buildSymbolicModel<TestType::ddType, ValueType>(program, result.second)->template as<MT>();
} else if (TestType::engine == MdpEngine::JaniDd) {
auto janiData = storm::api::convertPrismToJani(program, storm::api::parsePropertiesForPrismProgram(formulasAsString, program));
janiData.first.substituteFunctions();
result.second = storm::api::extractFormulasFromProperties(janiData.second);
result.first = storm::api::buildSymbolicModel<TestType::ddType, ValueType>(janiData.first, result.second)->template as<MT>();
}
return result;
}
std::vector<storm::modelchecker::CheckTask<storm::logic::Formula, ValueType>> getTasks(std::vector<std::shared_ptr<storm::logic::Formula const>> const& formulas) const {
std::vector<storm::modelchecker::CheckTask<storm::logic::Formula, ValueType>> result;
for (auto const& f : formulas) {
result.emplace_back(*f);
}
return result;
}
template <typename MT = typename TestType::ModelType>
typename std::enable_if<std::is_same<MT, SparseModelType>::value, std::shared_ptr<storm::modelchecker::AbstractModelChecker<MT>>>::type
createModelChecker(std::shared_ptr<MT> const& model) const {
if (TestType::engine == MdpEngine::PrismSparse || TestType::engine == MdpEngine::JaniSparse || TestType::engine == MdpEngine::JitSparse) {
return std::make_shared<storm::modelchecker::SparseMdpPrctlModelChecker<SparseModelType>>(*model);
}
}
template <typename MT = typename TestType::ModelType>
typename std::enable_if<std::is_same<MT, SymbolicModelType>::value, std::shared_ptr<storm::modelchecker::AbstractModelChecker<MT>>>::type
createModelChecker(std::shared_ptr<MT> const& model) const {
if (TestType::engine == MdpEngine::Hybrid) {
return std::make_shared<storm::modelchecker::HybridMdpPrctlModelChecker<SymbolicModelType>>(*model);
} else if (TestType::engine == MdpEngine::PrismDd || TestType::engine == MdpEngine::JaniDd) {
return std::make_shared<storm::modelchecker::SymbolicMdpPrctlModelChecker<SymbolicModelType>>(*model);
}
}
bool getQualitativeResultAtInitialState(std::shared_ptr<storm::models::Model<ValueType>> const& model, std::unique_ptr<storm::modelchecker::CheckResult>& result) {
auto filter = getInitialStateFilter(model);
result->filter(*filter);
return result->asQualitativeCheckResult().forallTrue();
}
ValueType getQuantitativeResultAtInitialState(std::shared_ptr<storm::models::Model<ValueType>> const& model, std::unique_ptr<storm::modelchecker::CheckResult>& result) {
auto filter = getInitialStateFilter(model);
result->filter(*filter);
return result->asQuantitativeCheckResult<ValueType>().getMin();
}
private:
storm::Environment _environment;
std::unique_ptr<storm::modelchecker::QualitativeCheckResult> getInitialStateFilter(std::shared_ptr<storm::models::Model<ValueType>> const& model) const {
if (isSparseModel()) {
return std::make_unique<storm::modelchecker::ExplicitQualitativeCheckResult>(model->template as<SparseModelType>()->getInitialStates());
} else {
return std::make_unique<storm::modelchecker::SymbolicQualitativeCheckResult<TestType::ddType>>(model->template as<SymbolicModelType>()->getReachableStates(), model->template as<SymbolicModelType>()->getInitialStates());
}
}
};
typedef ::testing::Types<
SparseDoubleValueIterationGmmxxGaussSeidelMultEnvironment,
SparseDoubleValueIterationGmmxxRegularMultEnvironment,
SparseDoubleValueIterationNativeGaussSeidelMultEnvironment,
SparseDoubleValueIterationNativeRegularMultEnvironment,
JaniSparseDoubleValueIterationEnvironment,
JitSparseDoubleValueIterationEnvironment,
SparseDoubleIntervalIterationEnvironment,
SparseDoubleSoundValueIterationEnvironment,
SparseDoubleOptimisticValueIterationEnvironment,
SparseDoubleTopologicalValueIterationEnvironment,
SparseDoubleTopologicalSoundValueIterationEnvironment,
SparseRationalPolicyIterationEnvironment,
SparseRationalViToPiEnvironment,
SparseRationalRationalSearchEnvironment,
HybridCuddDoubleValueIterationEnvironment,
HybridSylvanDoubleValueIterationEnvironment,
HybridCuddDoubleSoundValueIterationEnvironment,
HybridCuddDoubleOptimisticValueIterationEnvironment,
HybridSylvanRationalPolicyIterationEnvironment,
DdCuddDoubleValueIterationEnvironment,
JaniDdCuddDoubleValueIterationEnvironment,
DdSylvanDoubleValueIterationEnvironment,
DdCuddDoublePolicyIterationEnvironment,
DdSylvanRationalRationalSearchEnvironment
> TestingTypes;
TYPED_TEST_SUITE(MdpPrctlModelCheckerTest, TestingTypes,);
TYPED_TEST(MdpPrctlModelCheckerTest, Dice) {
std::string formulasString = "Pmin=? [F \"two\"]";
formulasString += "; Pmax=? [F \"two\"]";
formulasString += "; Pmin=? [F \"three\"]";
formulasString += "; Pmax=? [F \"three\"]";
formulasString += "; Pmin=? [F \"four\"]";
formulasString += "; Pmax=? [F \"four\"]";
formulasString += "; Rmin=? [F \"done\"]";
formulasString += "; Rmax=? [F \"done\"]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/mdp/two_dice.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(169ul, model->getNumberOfStates());
EXPECT_EQ(436ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("1/36"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[1]);
EXPECT_NEAR(this->parseNumber("1/36"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[2]);
EXPECT_NEAR(this->parseNumber("2/36"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[3]);
EXPECT_NEAR(this->parseNumber("2/36"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[4]);
EXPECT_NEAR(this->parseNumber("3/36"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[5]);
EXPECT_NEAR(this->parseNumber("3/36"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[6]);
EXPECT_NEAR(this->parseNumber("22/3"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[7]);
EXPECT_NEAR(this->parseNumber("22/3"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
}
TYPED_TEST(MdpPrctlModelCheckerTest, AsynchronousLeader) {
std::string formulasString = "Pmin=? [F \"elected\"]";
formulasString += "; Pmax=? [F \"elected\"]";
formulasString += "; Pmin=? [F<=25 \"elected\"]";
formulasString += "; Pmax=? [F<=25 \"elected\"]";
formulasString += "; Rmin=? [F \"elected\"]";
formulasString += "; Rmax=? [F \"elected\"]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/mdp/leader4.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(3172ul, model->getNumberOfStates());
EXPECT_EQ(7144ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[1]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[2]);
EXPECT_NEAR(this->parseNumber("1/16"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[3]);
EXPECT_NEAR(this->parseNumber("1/16"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[4]);
EXPECT_NEAR(this->parseNumber("30/7"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[5]);
EXPECT_NEAR(this->parseNumber("30/7"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
}
TYPED_TEST(MdpPrctlModelCheckerTest, consensus) {
std::string formulasString = "Pmax=? [F \"finished\"]";
formulasString += "; Pmax=? [F \"all_coins_equal_1\"]";
formulasString += "; P<0.8 [F \"all_coins_equal_1\"]";
formulasString += "; P<0.9 [F \"all_coins_equal_1\"]";
formulasString += "; Rmax=? [F \"all_coins_equal_1\"]";
formulasString += "; Rmin=? [F \"all_coins_equal_1\"]";
formulasString += "; Rmax=? [F \"finished\"]";
formulasString += "; Rmin=? [F \"finished\"]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/mdp/coin2-2.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(272ul, model->getNumberOfStates());
EXPECT_EQ(492ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[1]);
EXPECT_NEAR(this->parseNumber("57/64"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[2]);
EXPECT_FALSE(this->getQualitativeResultAtInitialState(model, result));
result = checker->check(this->env(), tasks[3]);
EXPECT_TRUE(this->getQualitativeResultAtInitialState(model, result));
result = checker->check(this->env(), tasks[4]);
EXPECT_TRUE(storm::utility::isInfinity(this->getQuantitativeResultAtInitialState(model, result)));
result = checker->check(this->env(), tasks[5]);
EXPECT_TRUE(storm::utility::isInfinity(this->getQuantitativeResultAtInitialState(model, result)));
result = checker->check(this->env(), tasks[6]);
EXPECT_NEAR(this->parseNumber("75"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[7]);
EXPECT_NEAR(this->parseNumber("48"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
}
TYPED_TEST(MdpPrctlModelCheckerTest, TinyRewards) {
std::string formulasString = "Rmin=? [F \"target\"]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/mdp/tiny_rewards.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(3ul, model->getNumberOfStates());
EXPECT_EQ(4ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
// This example considers a zero-reward end component that does not reach the target
// For some methods this requires end-component elimination which is (currently) not supported in the Dd engine
if (TypeParam::engine == MdpEngine::PrismDd && this->env().solver().minMax().getMethod() == storm::solver::MinMaxMethod::RationalSearch) {
STORM_SILENT_EXPECT_THROW(checker->check(this->env(), tasks[0]), storm::exceptions::UncheckedRequirementException);
} else {
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
}
}
TYPED_TEST(MdpPrctlModelCheckerTest, Team) {
std::string formulasString = "R{\"w_1_total\"}max=? [ C ]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/mdp/multiobj_team3.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(12475ul, model->getNumberOfStates());
EXPECT_EQ(15228ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
// This example considers an expected total reward formula, which is not supported in all engines
if (TypeParam::engine == MdpEngine::PrismSparse || TypeParam::engine == MdpEngine::JaniSparse || TypeParam::engine == MdpEngine::JitSparse) {
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("114/49"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
} else {
EXPECT_FALSE(checker->canHandle(tasks[0]));
}
}
}