You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
533 lines
16 KiB
533 lines
16 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include "Eigen/SparseCore"
|
|
#include <bench/BenchTimer.h>
|
|
#include <cstdlib>
|
|
#include <string>
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/Jacobi>
|
|
#include <Eigen/Householder>
|
|
#include <Eigen/IterativeLinearSolvers>
|
|
#include <unsupported/Eigen/IterativeSolvers>
|
|
#include <Eigen/LU>
|
|
#include <unsupported/Eigen/SparseExtra>
|
|
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
#include <Eigen/CholmodSupport>
|
|
#endif
|
|
|
|
#ifdef EIGEN_UMFPACK_SUPPORT
|
|
#include <Eigen/UmfPackSupport>
|
|
#endif
|
|
|
|
#ifdef EIGEN_PARDISO_SUPPORT
|
|
#include <Eigen/PardisoSupport>
|
|
#endif
|
|
|
|
#ifdef EIGEN_SUPERLU_SUPPORT
|
|
#include <Eigen/SuperLUSupport>
|
|
#endif
|
|
|
|
#ifdef EIGEN_PASTIX_SUPPORT
|
|
#include <Eigen/PaStiXSupport>
|
|
#endif
|
|
|
|
// CONSTANTS
|
|
#define EIGEN_UMFPACK 0
|
|
#define EIGEN_SUPERLU 1
|
|
#define EIGEN_PASTIX 2
|
|
#define EIGEN_PARDISO 3
|
|
#define EIGEN_BICGSTAB 4
|
|
#define EIGEN_BICGSTAB_ILUT 5
|
|
#define EIGEN_GMRES 6
|
|
#define EIGEN_GMRES_ILUT 7
|
|
#define EIGEN_SIMPLICIAL_LDLT 8
|
|
#define EIGEN_CHOLMOD_LDLT 9
|
|
#define EIGEN_PASTIX_LDLT 10
|
|
#define EIGEN_PARDISO_LDLT 11
|
|
#define EIGEN_SIMPLICIAL_LLT 12
|
|
#define EIGEN_CHOLMOD_SUPERNODAL_LLT 13
|
|
#define EIGEN_CHOLMOD_SIMPLICIAL_LLT 14
|
|
#define EIGEN_PASTIX_LLT 15
|
|
#define EIGEN_PARDISO_LLT 16
|
|
#define EIGEN_CG 17
|
|
#define EIGEN_CG_PRECOND 18
|
|
#define EIGEN_ALL_SOLVERS 19
|
|
|
|
using namespace Eigen;
|
|
using namespace std;
|
|
|
|
struct Stats{
|
|
ComputationInfo info;
|
|
double total_time;
|
|
double compute_time;
|
|
double solve_time;
|
|
double rel_error;
|
|
int memory_used;
|
|
int iterations;
|
|
int isavail;
|
|
int isIterative;
|
|
};
|
|
|
|
// Global variables for input parameters
|
|
int MaximumIters; // Maximum number of iterations
|
|
double RelErr; // Relative error of the computed solution
|
|
|
|
template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
|
|
template<> inline float test_precision<float>() { return 1e-3f; }
|
|
template<> inline double test_precision<double>() { return 1e-6; }
|
|
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
|
|
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
|
|
|
|
void printStatheader(std::ofstream& out)
|
|
{
|
|
int LUcnt = 0;
|
|
string LUlist =" ", LLTlist = "<TH > LLT", LDLTlist = "<TH > LDLT ";
|
|
|
|
#ifdef EIGEN_UMFPACK_SUPPORT
|
|
LUlist += "<TH > UMFPACK "; LUcnt++;
|
|
#endif
|
|
#ifdef EIGEN_SUPERLU_SUPPORT
|
|
LUlist += "<TH > SUPERLU "; LUcnt++;
|
|
#endif
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
LLTlist += "<TH > CHOLMOD SP LLT<TH > CHOLMOD LLT";
|
|
LDLTlist += "<TH>CHOLMOD LDLT";
|
|
#endif
|
|
#ifdef EIGEN_PARDISO_SUPPORT
|
|
LUlist += "<TH > PARDISO LU"; LUcnt++;
|
|
LLTlist += "<TH > PARDISO LLT";
|
|
LDLTlist += "<TH > PARDISO LDLT";
|
|
#endif
|
|
#ifdef EIGEN_PASTIX_SUPPORT
|
|
LUlist += "<TH > PASTIX LU"; LUcnt++;
|
|
LLTlist += "<TH > PASTIX LLT";
|
|
LDLTlist += "<TH > PASTIX LDLT";
|
|
#endif
|
|
|
|
out << "<TABLE border=\"1\" >\n ";
|
|
out << "<TR><TH>Matrix <TH> N <TH> NNZ <TH> ";
|
|
if (LUcnt) out << LUlist;
|
|
out << " <TH >BiCGSTAB <TH >BiCGSTAB+ILUT"<< "<TH >GMRES+ILUT" <<LDLTlist << LLTlist << "<TH> CG "<< std::endl;
|
|
}
|
|
|
|
|
|
template<typename Solver, typename Scalar>
|
|
Stats call_solver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
|
|
{
|
|
Stats stat;
|
|
Matrix<Scalar, Dynamic, 1> x;
|
|
BenchTimer timer;
|
|
timer.reset();
|
|
timer.start();
|
|
solver.compute(A);
|
|
if (solver.info() != Success)
|
|
{
|
|
stat.info = NumericalIssue;
|
|
std::cerr << "Solver failed ... \n";
|
|
return stat;
|
|
}
|
|
timer.stop();
|
|
stat.compute_time = timer.value();
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
x = solver.solve(b);
|
|
if (solver.info() == NumericalIssue)
|
|
{
|
|
stat.info = NumericalIssue;
|
|
std::cerr << "Solver failed ... \n";
|
|
return stat;
|
|
}
|
|
|
|
timer.stop();
|
|
stat.solve_time = timer.value();
|
|
stat.total_time = stat.solve_time + stat.compute_time;
|
|
stat.memory_used = 0;
|
|
// Verify the relative error
|
|
if(refX.size() != 0)
|
|
stat.rel_error = (refX - x).norm()/refX.norm();
|
|
else
|
|
{
|
|
// Compute the relative residual norm
|
|
Matrix<Scalar, Dynamic, 1> temp;
|
|
temp = A * x;
|
|
stat.rel_error = (b-temp).norm()/b.norm();
|
|
}
|
|
if ( stat.rel_error > RelErr )
|
|
{
|
|
stat.info = NoConvergence;
|
|
return stat;
|
|
}
|
|
else
|
|
{
|
|
stat.info = Success;
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
template<typename Solver, typename Scalar>
|
|
Stats call_directsolver(Solver& solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
|
|
{
|
|
Stats stat;
|
|
stat = call_solver(solver, A, b, refX);
|
|
return stat;
|
|
}
|
|
|
|
template<typename Solver, typename Scalar>
|
|
Stats call_itersolver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
|
|
{
|
|
Stats stat;
|
|
solver.setTolerance(RelErr);
|
|
solver.setMaxIterations(MaximumIters);
|
|
|
|
stat = call_solver(solver, A, b, refX);
|
|
stat.iterations = solver.iterations();
|
|
return stat;
|
|
}
|
|
|
|
inline void printStatItem(Stats *stat, int solver_id, int& best_time_id, double& best_time_val)
|
|
{
|
|
stat[solver_id].isavail = 1;
|
|
|
|
if (stat[solver_id].info == NumericalIssue)
|
|
{
|
|
cout << " SOLVER FAILED ... Probably a numerical issue \n";
|
|
return;
|
|
}
|
|
if (stat[solver_id].info == NoConvergence){
|
|
cout << "REL. ERROR " << stat[solver_id].rel_error;
|
|
if(stat[solver_id].isIterative == 1)
|
|
cout << " (" << stat[solver_id].iterations << ") \n";
|
|
return;
|
|
}
|
|
|
|
// Record the best CPU time
|
|
if (!best_time_val)
|
|
{
|
|
best_time_val = stat[solver_id].total_time;
|
|
best_time_id = solver_id;
|
|
}
|
|
else if (stat[solver_id].total_time < best_time_val)
|
|
{
|
|
best_time_val = stat[solver_id].total_time;
|
|
best_time_id = solver_id;
|
|
}
|
|
// Print statistics to standard output
|
|
if (stat[solver_id].info == Success){
|
|
cout<< "COMPUTE TIME : " << stat[solver_id].compute_time<< " \n";
|
|
cout<< "SOLVE TIME : " << stat[solver_id].solve_time<< " \n";
|
|
cout<< "TOTAL TIME : " << stat[solver_id].total_time<< " \n";
|
|
cout << "REL. ERROR : " << stat[solver_id].rel_error ;
|
|
if(stat[solver_id].isIterative == 1) {
|
|
cout << " (" << stat[solver_id].iterations << ") ";
|
|
}
|
|
cout << std::endl;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Print the results from all solvers corresponding to a particular matrix
|
|
* The best CPU time is printed in bold
|
|
*/
|
|
inline void printHtmlStatLine(Stats *stat, int best_time_id, string& statline)
|
|
{
|
|
|
|
string markup;
|
|
ostringstream compute,solve,total,error;
|
|
for (int i = 0; i < EIGEN_ALL_SOLVERS; i++)
|
|
{
|
|
if (stat[i].isavail == 0) continue;
|
|
if(i == best_time_id)
|
|
markup = "<TD style=\"background-color:red\">";
|
|
else
|
|
markup = "<TD>";
|
|
|
|
if (stat[i].info == Success){
|
|
compute << markup << stat[i].compute_time;
|
|
solve << markup << stat[i].solve_time;
|
|
total << markup << stat[i].total_time;
|
|
error << " <TD> " << stat[i].rel_error;
|
|
if(stat[i].isIterative == 1) {
|
|
error << " (" << stat[i].iterations << ") ";
|
|
}
|
|
}
|
|
else {
|
|
compute << " <TD> -" ;
|
|
solve << " <TD> -" ;
|
|
total << " <TD> -" ;
|
|
if(stat[i].info == NoConvergence){
|
|
error << " <TD> "<< stat[i].rel_error ;
|
|
if(stat[i].isIterative == 1)
|
|
error << " (" << stat[i].iterations << ") ";
|
|
}
|
|
else error << " <TD> - ";
|
|
}
|
|
}
|
|
|
|
statline = "<TH>Compute Time " + compute.str() + "\n"
|
|
+ "<TR><TH>Solve Time " + solve.str() + "\n"
|
|
+ "<TR><TH>Total Time " + total.str() + "\n"
|
|
+"<TR><TH>Error(Iter)" + error.str() + "\n";
|
|
|
|
}
|
|
|
|
template <typename Scalar>
|
|
int SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, Stats *stat)
|
|
{
|
|
typedef SparseMatrix<Scalar, ColMajor> SpMat;
|
|
// First, deal with Nonsymmetric and symmetric matrices
|
|
int best_time_id = 0;
|
|
double best_time_val = 0.0;
|
|
//UMFPACK
|
|
#ifdef EIGEN_UMFPACK_SUPPORT
|
|
{
|
|
cout << "Solving with UMFPACK LU ... \n";
|
|
UmfPackLU<SpMat> solver;
|
|
stat[EIGEN_UMFPACK] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat, EIGEN_UMFPACK, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
//SuperLU
|
|
#ifdef EIGEN_SUPERLU_SUPPORT
|
|
{
|
|
cout << "\nSolving with SUPERLU ... \n";
|
|
SuperLU<SpMat> solver;
|
|
stat[EIGEN_SUPERLU] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat, EIGEN_SUPERLU, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
// PaStix LU
|
|
#ifdef EIGEN_PASTIX_SUPPORT
|
|
{
|
|
cout << "\nSolving with PASTIX LU ... \n";
|
|
PastixLU<SpMat> solver;
|
|
stat[EIGEN_PASTIX] = call_directsolver(solver, A, b, refX) ;
|
|
printStatItem(stat, EIGEN_PASTIX, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
//PARDISO LU
|
|
#ifdef EIGEN_PARDISO_SUPPORT
|
|
{
|
|
cout << "\nSolving with PARDISO LU ... \n";
|
|
PardisoLU<SpMat> solver;
|
|
stat[EIGEN_PARDISO] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat, EIGEN_PARDISO, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
//BiCGSTAB
|
|
{
|
|
cout << "\nSolving with BiCGSTAB ... \n";
|
|
BiCGSTAB<SpMat> solver;
|
|
stat[EIGEN_BICGSTAB] = call_itersolver(solver, A, b, refX);
|
|
stat[EIGEN_BICGSTAB].isIterative = 1;
|
|
printStatItem(stat, EIGEN_BICGSTAB, best_time_id, best_time_val);
|
|
}
|
|
//BiCGSTAB+ILUT
|
|
{
|
|
cout << "\nSolving with BiCGSTAB and ILUT ... \n";
|
|
BiCGSTAB<SpMat, IncompleteLUT<Scalar> > solver;
|
|
stat[EIGEN_BICGSTAB_ILUT] = call_itersolver(solver, A, b, refX);
|
|
stat[EIGEN_BICGSTAB_ILUT].isIterative = 1;
|
|
printStatItem(stat, EIGEN_BICGSTAB_ILUT, best_time_id, best_time_val);
|
|
}
|
|
|
|
|
|
//GMRES
|
|
// {
|
|
// cout << "\nSolving with GMRES ... \n";
|
|
// GMRES<SpMat> solver;
|
|
// stat[EIGEN_GMRES] = call_itersolver(solver, A, b, refX);
|
|
// stat[EIGEN_GMRES].isIterative = 1;
|
|
// printStatItem(stat, EIGEN_GMRES, best_time_id, best_time_val);
|
|
// }
|
|
//GMRES+ILUT
|
|
{
|
|
cout << "\nSolving with GMRES and ILUT ... \n";
|
|
GMRES<SpMat, IncompleteLUT<Scalar> > solver;
|
|
stat[EIGEN_GMRES_ILUT] = call_itersolver(solver, A, b, refX);
|
|
stat[EIGEN_GMRES_ILUT].isIterative = 1;
|
|
printStatItem(stat, EIGEN_GMRES_ILUT, best_time_id, best_time_val);
|
|
}
|
|
|
|
// Hermitian and not necessarily positive-definites
|
|
if (sym != NonSymmetric)
|
|
{
|
|
// Internal Cholesky
|
|
{
|
|
cout << "\nSolving with Simplicial LDLT ... \n";
|
|
SimplicialLDLT<SpMat, Lower> solver;
|
|
stat[EIGEN_SIMPLICIAL_LDLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat, EIGEN_SIMPLICIAL_LDLT, best_time_id, best_time_val);
|
|
}
|
|
|
|
// CHOLMOD
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
{
|
|
cout << "\nSolving with CHOLMOD LDLT ... \n";
|
|
CholmodDecomposition<SpMat, Lower> solver;
|
|
solver.setMode(CholmodLDLt);
|
|
stat[EIGEN_CHOLMOD_LDLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_CHOLMOD_LDLT, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
//PASTIX LLT
|
|
#ifdef EIGEN_PASTIX_SUPPORT
|
|
{
|
|
cout << "\nSolving with PASTIX LDLT ... \n";
|
|
PastixLDLT<SpMat, Lower> solver;
|
|
stat[EIGEN_PASTIX_LDLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_PASTIX_LDLT, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
//PARDISO LLT
|
|
#ifdef EIGEN_PARDISO_SUPPORT
|
|
{
|
|
cout << "\nSolving with PARDISO LDLT ... \n";
|
|
PardisoLDLT<SpMat, Lower> solver;
|
|
stat[EIGEN_PARDISO_LDLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_PARDISO_LDLT, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Now, symmetric POSITIVE DEFINITE matrices
|
|
if (sym == SPD)
|
|
{
|
|
|
|
//Internal Sparse Cholesky
|
|
{
|
|
cout << "\nSolving with SIMPLICIAL LLT ... \n";
|
|
SimplicialLLT<SpMat, Lower> solver;
|
|
stat[EIGEN_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_SIMPLICIAL_LLT, best_time_id, best_time_val);
|
|
}
|
|
|
|
// CHOLMOD
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
{
|
|
// CholMOD SuperNodal LLT
|
|
cout << "\nSolving with CHOLMOD LLT (Supernodal)... \n";
|
|
CholmodDecomposition<SpMat, Lower> solver;
|
|
solver.setMode(CholmodSupernodalLLt);
|
|
stat[EIGEN_CHOLMOD_SUPERNODAL_LLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_CHOLMOD_SUPERNODAL_LLT, best_time_id, best_time_val);
|
|
// CholMod Simplicial LLT
|
|
cout << "\nSolving with CHOLMOD LLT (Simplicial) ... \n";
|
|
solver.setMode(CholmodSimplicialLLt);
|
|
stat[EIGEN_CHOLMOD_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_CHOLMOD_SIMPLICIAL_LLT, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
//PASTIX LLT
|
|
#ifdef EIGEN_PASTIX_SUPPORT
|
|
{
|
|
cout << "\nSolving with PASTIX LLT ... \n";
|
|
PastixLLT<SpMat, Lower> solver;
|
|
stat[EIGEN_PASTIX_LLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_PASTIX_LLT, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
//PARDISO LLT
|
|
#ifdef EIGEN_PARDISO_SUPPORT
|
|
{
|
|
cout << "\nSolving with PARDISO LLT ... \n";
|
|
PardisoLLT<SpMat, Lower> solver;
|
|
stat[EIGEN_PARDISO_LLT] = call_directsolver(solver, A, b, refX);
|
|
printStatItem(stat,EIGEN_PARDISO_LLT, best_time_id, best_time_val);
|
|
}
|
|
#endif
|
|
|
|
// Internal CG
|
|
{
|
|
cout << "\nSolving with CG ... \n";
|
|
ConjugateGradient<SpMat, Lower> solver;
|
|
stat[EIGEN_CG] = call_itersolver(solver, A, b, refX);
|
|
stat[EIGEN_CG].isIterative = 1;
|
|
printStatItem(stat,EIGEN_CG, best_time_id, best_time_val);
|
|
}
|
|
//CG+IdentityPreconditioner
|
|
// {
|
|
// cout << "\nSolving with CG and IdentityPreconditioner ... \n";
|
|
// ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver;
|
|
// stat[EIGEN_CG_PRECOND] = call_itersolver(solver, A, b, refX);
|
|
// stat[EIGEN_CG_PRECOND].isIterative = 1;
|
|
// printStatItem(stat,EIGEN_CG_PRECOND, best_time_id, best_time_val);
|
|
// }
|
|
} // End SPD matrices
|
|
|
|
return best_time_id;
|
|
}
|
|
|
|
/* Browse all the matrices available in the specified folder
|
|
* and solve the associated linear system.
|
|
* The results of each solve are printed in the standard output
|
|
* and optionally in the provided html file
|
|
*/
|
|
template <typename Scalar>
|
|
void Browse_Matrices(const string folder, bool statFileExists, std::string& statFile, int maxiters, double tol)
|
|
{
|
|
MaximumIters = maxiters; // Maximum number of iterations, global variable
|
|
RelErr = tol; //Relative residual error as stopping criterion for iterative solvers
|
|
MatrixMarketIterator<Scalar> it(folder);
|
|
Stats stat[EIGEN_ALL_SOLVERS];
|
|
for ( ; it; ++it)
|
|
{
|
|
for (int i = 0; i < EIGEN_ALL_SOLVERS; i++)
|
|
{
|
|
stat[i].isavail = 0;
|
|
stat[i].isIterative = 0;
|
|
}
|
|
|
|
int best_time_id;
|
|
cout<< "\n\n===================================================== \n";
|
|
cout<< " ====== SOLVING WITH MATRIX " << it.matname() << " ====\n";
|
|
cout<< " =================================================== \n\n";
|
|
Matrix<Scalar, Dynamic, 1> refX;
|
|
if(it.hasrefX()) refX = it.refX();
|
|
best_time_id = SelectSolvers<Scalar>(it.matrix(), it.sym(), it.rhs(), refX, &stat[0]);
|
|
|
|
if(statFileExists)
|
|
{
|
|
string statline;
|
|
printHtmlStatLine(&stat[0], best_time_id, statline);
|
|
std::ofstream statbuf(statFile.c_str(), std::ios::app);
|
|
statbuf << "<TR><TH rowspan=\"4\">" << it.matname() << " <TD rowspan=\"4\"> "
|
|
<< it.matrix().rows() << " <TD rowspan=\"4\"> " << it.matrix().nonZeros()<< " "<< statline ;
|
|
statbuf.close();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool get_options(int argc, char **args, string option, string* value=0)
|
|
{
|
|
int idx = 1, found=false;
|
|
while (idx<argc && !found){
|
|
if (option.compare(args[idx]) == 0){
|
|
found = true;
|
|
if(value) *value = args[idx+1];
|
|
}
|
|
idx+=2;
|
|
}
|
|
return found;
|
|
}
|