You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

164 lines
10 KiB

#include "src/storage/prism/menu_games/AbstractProgram.h"
#include "src/storage/prism/Program.h"
#include "src/storage/dd/CuddDdManager.h"
#include "src/storage/dd/CuddAdd.h"
#include "src/utility/macros.h"
#include "src/utility/solver.h"
#include "src/exceptions/WrongFormatException.h"
#include "src/exceptions/InvalidArgumentException.h"
namespace storm {
namespace prism {
namespace menu_games {
template <storm::dd::DdType DdType, typename ValueType>
AbstractProgram<DdType, ValueType>::AbstractProgram(storm::expressions::ExpressionManager& expressionManager, storm::prism::Program const& program, std::vector<storm::expressions::Expression> const& initialPredicates, std::unique_ptr<storm::utility::solver::SmtSolverFactory>&& smtSolverFactory, bool addAllGuards) : smtSolverFactory(std::move(smtSolverFactory)), ddInformation(std::make_shared<storm::dd::DdManager<DdType>>()), expressionInformation(expressionManager, initialPredicates, program.getAllExpressionVariables(), program.getAllRangeExpressions()), modules(), program(program), initialStateAbstractor(expressionInformation, ddInformation, *this->smtSolverFactory), lastAbstractBdd(ddInformation.manager->getBddZero()), lastAbstractAdd(ddInformation.manager->getAddZero()), lastReachableStates(ddInformation.manager->getBddZero()) {
// For now, we assume that there is a single module. If the program has more than one module, it needs
// to be flattened before the procedure.
STORM_LOG_THROW(program.getNumberOfModules() == 1, storm::exceptions::WrongFormatException, "Cannot create abstract program from program containing too many modules.");
uint_fast64_t totalNumberOfCommands = 0;
uint_fast64_t maximalUpdateCount = 0;
for (auto const& module : program.getModules()) {
// If we were requested to add all guards to the set of predicates, we do so now.
for (auto const& command : module.getCommands()) {
if (addAllGuards) {
expressionInformation.predicates.push_back(command.getGuardExpression());
}
maximalUpdateCount = std::max(maximalUpdateCount, static_cast<uint_fast64_t>(command.getNumberOfUpdates()));
}
totalNumberOfCommands += module.getNumberOfCommands();
}
// Create DD variable for the command encoding.
ddInformation.commandDdVariable = ddInformation.manager->addMetaVariable("command", 0, totalNumberOfCommands - 1).first;
// Create DD variable for update encoding.
ddInformation.updateDdVariable = ddInformation.manager->addMetaVariable("update", 0, maximalUpdateCount - 1).first;
// Create DD variables encoding the nondeterministic choices of player 2.
// NOTE: currently we assume that 100 variables suffice, which corresponds to 2^100 possible choices.
// If for some reason this should not be enough, we could grow this vector dynamically, but odds are
// that it's impossible to treat such models in any event.
for (uint_fast64_t index = 0; index < 100; ++index) {
storm::expressions::Variable newOptionVar = ddInformation.manager->addMetaVariable("opt" + std::to_string(index)).first;
ddInformation.optionDdVariables.push_back(std::make_pair(newOptionVar, ddInformation.manager->getIdentity(newOptionVar).toBdd()));
}
// Create DD variables for all predicates.
for (auto const& predicate : expressionInformation.predicates) {
ddInformation.addPredicate(predicate);
}
// For each module of the concrete program, we create an abstract counterpart.
for (auto const& module : program.getModules()) {
modules.emplace_back(module, expressionInformation, ddInformation, *this->smtSolverFactory);
}
// Add the initial state expression to the initial state abstractor.
initialStateAbstractor.addPredicate(program.getInitialConstruct().getInitialStatesExpression());
// Finally, retrieve the command-update probability ADD, so we can multiply it with the abstraction BDD later.
commandUpdateProbabilitiesAdd = modules.front().getCommandUpdateProbabilitiesAdd();
}
template <storm::dd::DdType DdType, typename ValueType>
void AbstractProgram<DdType, ValueType>::refine(std::vector<storm::expressions::Expression> const& predicates) {
// Add the predicates to the global list of predicates.
uint_fast64_t firstNewPredicateIndex = expressionInformation.predicates.size();
expressionInformation.predicates.insert(expressionInformation.predicates.end(), predicates.begin(), predicates.end());
// Create DD variables and some auxiliary data structures for the new predicates.
for (auto const& predicate : predicates) {
STORM_LOG_THROW(predicate.hasBooleanType(), storm::exceptions::InvalidArgumentException, "Expecting a predicate of type bool.");
ddInformation.addPredicate(predicate);
}
// Create a list of indices of the predicates, so we can refine the abstract modules and the state set abstractors.
std::vector<uint_fast64_t> newPredicateIndices;
for (uint_fast64_t index = firstNewPredicateIndex; index < expressionInformation.predicates.size(); ++index) {
newPredicateIndices.push_back(index);
}
// Refine all abstract modules.
for (auto& module : modules) {
module.refine(newPredicateIndices);
}
// Refine initial state abstractor.
initialStateAbstractor.refine(newPredicateIndices);
}
template <storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> AbstractProgram<DdType, ValueType>::getAbstractAdd() {
// As long as there is only one module, we only build its game representation.
std::pair<storm::dd::Bdd<DdType>, uint_fast64_t> gameBdd = modules.front().getAbstractBdd();
// If the abstraction did not change, we can return the most recenty obtained ADD.
if (gameBdd.first == lastAbstractBdd) {
return lastAbstractAdd;
}
// Otherwise, we remember that the abstract BDD changed and perform a reachability analysis.
lastAbstractBdd = gameBdd.first;
// Construct a set of all unnecessary variables, so we can abstract from it.
std::set<storm::expressions::Variable> variablesToAbstract = {ddInformation.commandDdVariable, ddInformation.updateDdVariable};
for (uint_fast64_t index = 0; index < gameBdd.second; ++index) {
variablesToAbstract.insert(ddInformation.optionDdVariables[index].first);
}
// Do a reachability analysis on the raw transition relation.
storm::dd::Bdd<DdType> transitionRelation = lastAbstractBdd.existsAbstract(variablesToAbstract);
lastReachableStates = this->getReachableStates(initialStateAbstractor.getAbstractStates(), transitionRelation);
// Find the deadlock states in the model.
storm::dd::Bdd<DdType> deadlockStates = transitionRelation.existsAbstract(ddInformation.successorVariables);
deadlockStates = lastReachableStates && !deadlockStates;
// If there are deadlock states, we fix them now.
storm::dd::Add<DdType> deadlockTransitions = ddInformation.manager->getAddZero();
if (!deadlockStates.isZero()) {
deadlockTransitions = (deadlockStates && ddInformation.allPredicateIdentities && ddInformation.manager->getEncoding(ddInformation.commandDdVariable, 0) && ddInformation.manager->getEncoding(ddInformation.updateDdVariable, 0) && ddInformation.getMissingOptionVariableCube(0, gameBdd.second)).toAdd();
}
// Construct the final game by cutting away the transitions of unreachable states.
lastAbstractAdd = (lastAbstractBdd && lastReachableStates).toAdd() * commandUpdateProbabilitiesAdd + deadlockTransitions;
return lastAbstractAdd;
}
template <storm::dd::DdType DdType, typename ValueType>
storm::dd::Bdd<DdType> AbstractProgram<DdType, ValueType>::getReachableStates() {
return lastReachableStates;
}
template <storm::dd::DdType DdType, typename ValueType>
storm::dd::Bdd<DdType> AbstractProgram<DdType, ValueType>::getReachableStates(storm::dd::Bdd<DdType> const& initialStates, storm::dd::Bdd<DdType> const& transitionRelation) {
storm::dd::Bdd<storm::dd::DdType::CUDD> frontier = initialStates;
storm::dd::Bdd<storm::dd::DdType::CUDD> reachableStates = initialStates;
uint_fast64_t reachabilityIteration = 0;
while (!frontier.isZero()) {
++reachabilityIteration;
frontier = frontier.andExists(transitionRelation, ddInformation.sourceVariables);
frontier = frontier.swapVariables(ddInformation.predicateDdVariables);
frontier &= !reachableStates;
reachableStates |= frontier;
STORM_LOG_TRACE("Iteration " << reachabilityIteration << " of reachability analysis.");
}
return reachableStates;
}
// Explicitly instantiate the class.
template class AbstractProgram<storm::dd::DdType::CUDD, double>;
}
}
}