346 lines
17 KiB

#include "src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h"
#include <utility>
#include "src/settings/Settings.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/models/PseudoModel.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/exceptions/IllegalArgumentException.h"
#include "src/exceptions/InvalidStateException.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
#include "storm-config.h"
#include "cudaForStorm.h"
namespace storm {
namespace solver {
template<typename ValueType>
TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::TopologicalValueIterationNondeterministicLinearEquationSolver() {
// Get the settings object to customize solving.
storm::settings::Settings* settings = storm::settings::Settings::getInstance();
// Get appropriate settings.
this->maximalNumberOfIterations = settings->getOptionByLongName("maxiter").getArgument(0).getValueAsUnsignedInteger();
this->precision = settings->getOptionByLongName("precision").getArgument(0).getValueAsDouble();
this->relative = !settings->isSet("absolute");
}
template<typename ValueType>
TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::TopologicalValueIterationNondeterministicLinearEquationSolver(double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : NativeNondeterministicLinearEquationSolver<ValueType>(precision, maximalNumberOfIterations, relative) {
// Intentionally left empty.
}
template<typename ValueType>
NondeterministicLinearEquationSolver<ValueType>* TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::clone() const {
return new TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>(*this);
}
template<typename ValueType>
void TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
// Now, we need to determine the SCCs of the MDP and a topological sort.
//std::vector<std::vector<uint_fast64_t>> stronglyConnectedComponents = storm::utility::graph::performSccDecomposition(this->getModel(), stronglyConnectedComponents, stronglyConnectedComponentsDependencyGraph);
//storm::storage::SparseMatrix<T> stronglyConnectedComponentsDependencyGraph = this->getModel().extractSccDependencyGraph(stronglyConnectedComponents);
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = A.getRowGroupIndices();
storm::models::NonDeterministicMatrixBasedPseudoModel<ValueType> pseudoModel(A, nondeterministicChoiceIndices);
//storm::storage::StronglyConnectedComponentDecomposition<ValueType> sccDecomposition(*static_cast<storm::models::AbstractPseudoModel<ValueType>*>(&pseudoModel), false, false);
storm::storage::StronglyConnectedComponentDecomposition<ValueType> sccDecomposition(pseudoModel, false, false);
if (sccDecomposition.size() == 0) {
LOG4CPLUS_ERROR(logger, "Can not solve given Equation System as the SCC Decomposition returned no SCCs.");
throw storm::exceptions::IllegalArgumentException() << "Can not solve given Equation System as the SCC Decomposition returned no SCCs.";
}
storm::storage::SparseMatrix<ValueType> stronglyConnectedComponentsDependencyGraph = pseudoModel.extractPartitionDependencyGraph(sccDecomposition);
std::vector<uint_fast64_t> topologicalSort = storm::utility::graph::getTopologicalSort(stronglyConnectedComponentsDependencyGraph);
// Calculate the optimal distribution of sccs
std::vector<std::pair<bool, std::vector<uint_fast64_t>>> optimalSccs = this->getOptimalGroupingFromTopologicalSccDecomposition(sccDecomposition, topologicalSort, A);
// Set up the environment for the power method.
// bool multiplyResultMemoryProvided = true;
// if (multiplyResult == nullptr) {
// multiplyResult = new std::vector<ValueType>(A.getRowCount());
// multiplyResultMemoryProvided = false;
// }
std::vector<ValueType>* currentX = nullptr;
//bool xMemoryProvided = true;
//if (newX == nullptr) {
// newX = new std::vector<ValueType>(x.size());
// xMemoryProvided = false;
//}
std::vector<ValueType>* swap = nullptr;
uint_fast64_t currentMaxLocalIterations = 0;
uint_fast64_t localIterations = 0;
uint_fast64_t globalIterations = 0;
bool converged = true;
// Iterate over all SCCs of the MDP as specified by the topological sort. This guarantees that an SCC is only
// solved after all SCCs it depends on have been solved.
int counter = 0;
for (auto sccIndexIt = optimalSccs.cbegin(); sccIndexIt != optimalSccs.cend() && converged; ++sccIndexIt) {
bool const useGpu = sccIndexIt->first;
std::vector <uint_fast64_t> const& scc = sccIndexIt->second;
// Generate a submatrix
storm::storage::BitVector subMatrixIndices(A.getColumnCount(), scc.cbegin(), scc.cend());
storm::storage::SparseMatrix<ValueType> sccSubmatrix = A.getSubmatrix(true, subMatrixIndices, subMatrixIndices);
std::vector<ValueType> sccSubB(sccSubmatrix.getRowCount());
storm::utility::vector::selectVectorValues<ValueType>(sccSubB, subMatrixIndices, nondeterministicChoiceIndices, b);
std::vector<ValueType> sccSubX(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccSubXSwap(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccMultiplyResult(sccSubmatrix.getRowCount());
// Prepare the pointers for swapping in the calculation
currentX = &sccSubX;
swap = &sccSubXSwap;
storm::utility::vector::selectVectorValues<ValueType>(sccSubX, subMatrixIndices, x); // x is getCols() large, where as b and multiplyResult are getRows() (nondet. choices times states)
std::vector<uint_fast64_t> sccSubNondeterministicChoiceIndices(sccSubmatrix.getColumnCount() + 1);
sccSubNondeterministicChoiceIndices.at(0) = 0;
// Preprocess all dependant states
// Remove outgoing transitions and create the ChoiceIndices
uint_fast64_t innerIndex = 0;
uint_fast64_t outerIndex = 0;
for (uint_fast64_t state: scc) {
// Choice Indices
sccSubNondeterministicChoiceIndices.at(outerIndex + 1) = sccSubNondeterministicChoiceIndices.at(outerIndex) + (nondeterministicChoiceIndices[state + 1] - nondeterministicChoiceIndices[state]);
for (auto rowGroupIt = nondeterministicChoiceIndices[state]; rowGroupIt != nondeterministicChoiceIndices[state + 1]; ++rowGroupIt) {
typename storm::storage::SparseMatrix<ValueType>::const_rows row = A.getRow(rowGroupIt);
for (auto rowIt = row.begin(); rowIt != row.end(); ++rowIt) {
if (!subMatrixIndices.get(rowIt->first)) {
// This is an outgoing transition of a state in the SCC to a state not included in the SCC
// Subtracting Pr(tau) * x_other from b fixes that
sccSubB.at(innerIndex) = sccSubB.at(innerIndex) + (rowIt->second * x.at(rowIt->first));
}
}
++innerIndex;
}
++outerIndex;
}
// For the current SCC, we need to perform value iteration until convergence.
if (useGpu) {
#ifdef STORM_HAVE_CUDAFORSTORM
if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
}
LOG4CPLUS_INFO(logger, "Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%).");
LOG4CPLUS_INFO(logger, "We will allocate " << (sizeof(uint_fast64_t)* sccSubmatrix.rowIndications.size() + sizeof(uint_fast64_t)* sccSubmatrix.columnsAndValues.size() * 2 + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubB.size() + sizeof(double)* sccSubB.size() + sizeof(uint_fast64_t)* sccSubNondeterministicChoiceIndices.size()) << " Bytes.");
LOG4CPLUS_INFO(logger, "The CUDA Runtime Version is " << getRuntimeCudaVersion());
std::vector<ValueType> copyX(*currentX);
if (minimize) {
basicValueIteration_mvReduce_uint64_double_minimize(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, copyX, sccSubB, sccSubNondeterministicChoiceIndices);
}
else {
basicValueIteration_mvReduce_uint64_double_maximize(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, copyX, sccSubB, sccSubNondeterministicChoiceIndices);
}
converged = true;
// DEBUG
localIterations = 0;
converged = false;
while (!converged && localIterations < this->maximalNumberOfIterations) {
// Compute x' = A*x + b.
sccSubmatrix.multiplyWithVector(*currentX, sccMultiplyResult);
storm::utility::vector::addVectorsInPlace<ValueType>(sccMultiplyResult, sccSubB);
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus:
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (minimize) {
storm::utility::vector::reduceVectorMin<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
else {
storm::utility::vector::reduceVectorMax<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, this->precision, this->relative);
// Update environment variables.
std::swap(currentX, swap);
++localIterations;
++globalIterations;
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations.");
uint_fast64_t diffCount = 0;
for (size_t i = 0; i < currentX->size(); ++i) {
if (currentX->at(i) != copyX.at(i)) {
LOG4CPLUS_WARN(logger, "CUDA solution differs on index " << i << " diff. " << std::abs(currentX->at(i) - copyX.at(i)) << ", CPU: " << currentX->at(i) << ", CUDA: " << copyX.at(i));
std::cout << "CUDA solution differs on index " << i << " diff. " << std::abs(currentX->at(i) - copyX.at(i)) << ", CPU: " << currentX->at(i) << ", CUDA: " << copyX.at(i) << std::endl;
++diffCount;
}
}
std::cout << "CUDA solution differed in " << diffCount << " of " << currentX->size() << " values." << std::endl;
#endif
} else {
localIterations = 0;
converged = false;
while (!converged && localIterations < this->maximalNumberOfIterations) {
// Compute x' = A*x + b.
sccSubmatrix.multiplyWithVector(*currentX, sccMultiplyResult);
storm::utility::vector::addVectorsInPlace<ValueType>(sccMultiplyResult, sccSubB);
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus:
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (minimize) {
storm::utility::vector::reduceVectorMin<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
else {
storm::utility::vector::reduceVectorMax<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, this->precision, this->relative);
// Update environment variables.
std::swap(currentX, swap);
++localIterations;
++globalIterations;
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations.");
}
// The Result of this SCC has to be taken back into the main result vector
innerIndex = 0;
for (uint_fast64_t state: scc) {
x.at(state) = currentX->at(innerIndex);
++innerIndex;
}
// Since the pointers for swapping in the calculation point to temps they should not be valid anymore
currentX = nullptr;
swap = nullptr;
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
}
//if (!xMemoryProvided) {
// delete newX;
//}
// if (!multiplyResultMemoryProvided) {
// delete multiplyResult;
// }
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << currentMaxLocalIterations << " iterations.");
}
else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << currentMaxLocalIterations << " iterations.");
}
}
template<typename ValueType>
std::vector<std::pair<bool, std::vector<uint_fast64_t>>>
TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::getOptimalGroupingFromTopologicalSccDecomposition(storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& sccDecomposition, std::vector<uint_fast64_t> const& topologicalSort, storm::storage::SparseMatrix<ValueType> const& matrix) const {
std::vector<std::pair<bool, std::vector<uint_fast64_t>>> result;
#ifdef STORM_HAVE_CUDAFORSTORM
// 95% to have a bit of padding
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
size_t lastResultIndex = 0;
std::vector<uint_fast64_t> const& rowGroupIndices = matrix.getRowGroupIndices();
size_t currentSize = 0;
for (auto sccIndexIt = topologicalSort.cbegin(); sccIndexIt != topologicalSort.cend(); ++sccIndexIt) {
storm::storage::StateBlock const& scc = sccDecomposition[*sccIndexIt];
uint_fast64_t rowCount = 0;
uint_fast64_t entryCount = 0;
std::vector<uint_fast64_t> rowGroups;
rowGroups.reserve(scc.size());
for (auto sccIt = scc.cbegin(); sccIt != scc.cend(); ++sccIt) {
rowCount += matrix.getRowGroupSize(*sccIt);
entryCount += matrix.getRowGroupEntryCount(*sccIt);
rowGroups.push_back(*sccIt);
}
size_t sccSize = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(rowCount), scc.size(), static_cast<size_t>(entryCount));
if ((currentSize + sccSize) <= cudaFreeMemory) {
// There is enough space left in the current group
if (currentSize == 0) {
result.push_back(std::make_pair(true, rowGroups));
}
else {
result[lastResultIndex].second.insert(result[lastResultIndex].second.end(), rowGroups.begin(), rowGroups.end());
}
currentSize += sccSize;
}
else {
if (sccSize <= cudaFreeMemory) {
++lastResultIndex;
result.push_back(std::make_pair(true, rowGroups));
currentSize = sccSize;
}
else {
// This group is too big to fit into the CUDA Memory by itself
lastResultIndex += 2;
result.push_back(std::make_pair(false, rowGroups));
currentSize = 0;
}
}
}
#else
for (auto sccIndexIt = topologicalSort.cbegin(); sccIndexIt != topologicalSort.cend(); ++sccIndexIt) {
storm::storage::StateBlock const& scc = sccDecomposition[*sccIndexIt];
std::vector<uint_fast64_t> rowGroups;
rowGroups.reserve(scc.size());
for (auto sccIt = scc.cbegin(); sccIt != scc.cend(); ++sccIt) {
rowGroups.push_back(*sccIt);
result.push_back(std::make_pair(false, rowGroups));
}
}
#endif
return result;
}
// Explicitly instantiate the solver.
template class TopologicalValueIterationNondeterministicLinearEquationSolver<double>;
} // namespace solver
} // namespace storm