You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

938 lines
29 KiB

/* glpnpp01.c */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpnpp.h"
NPP *npp_create_wksp(void)
{ /* create LP/MIP preprocessor workspace */
NPP *npp;
npp = xmalloc(sizeof(NPP));
npp->orig_dir = 0;
npp->orig_m = npp->orig_n = npp->orig_nnz = 0;
npp->pool = dmp_create_pool();
npp->name = npp->obj = NULL;
npp->c0 = 0.0;
npp->nrows = npp->ncols = 0;
npp->r_head = npp->r_tail = NULL;
npp->c_head = npp->c_tail = NULL;
npp->stack = dmp_create_pool();
npp->top = NULL;
#if 0 /* 16/XII-2009 */
memset(&npp->count, 0, sizeof(npp->count));
#endif
npp->m = npp->n = npp->nnz = 0;
npp->row_ref = npp->col_ref = NULL;
npp->sol = npp->scaling = 0;
npp->p_stat = npp->d_stat = npp->t_stat = npp->i_stat = 0;
npp->r_stat = NULL;
/*npp->r_prim =*/ npp->r_pi = NULL;
npp->c_stat = NULL;
npp->c_value = /*npp->c_dual =*/ NULL;
return npp;
}
void npp_insert_row(NPP *npp, NPPROW *row, int where)
{ /* insert row to the row list */
if (where == 0)
{ /* insert row to the beginning of the row list */
row->prev = NULL;
row->next = npp->r_head;
if (row->next == NULL)
npp->r_tail = row;
else
row->next->prev = row;
npp->r_head = row;
}
else
{ /* insert row to the end of the row list */
row->prev = npp->r_tail;
row->next = NULL;
if (row->prev == NULL)
npp->r_head = row;
else
row->prev->next = row;
npp->r_tail = row;
}
return;
}
void npp_remove_row(NPP *npp, NPPROW *row)
{ /* remove row from the row list */
if (row->prev == NULL)
npp->r_head = row->next;
else
row->prev->next = row->next;
if (row->next == NULL)
npp->r_tail = row->prev;
else
row->next->prev = row->prev;
return;
}
void npp_activate_row(NPP *npp, NPPROW *row)
{ /* make row active */
if (!row->temp)
{ row->temp = 1;
/* move the row to the beginning of the row list */
npp_remove_row(npp, row);
npp_insert_row(npp, row, 0);
}
return;
}
void npp_deactivate_row(NPP *npp, NPPROW *row)
{ /* make row inactive */
if (row->temp)
{ row->temp = 0;
/* move the row to the end of the row list */
npp_remove_row(npp, row);
npp_insert_row(npp, row, 1);
}
return;
}
void npp_insert_col(NPP *npp, NPPCOL *col, int where)
{ /* insert column to the column list */
if (where == 0)
{ /* insert column to the beginning of the column list */
col->prev = NULL;
col->next = npp->c_head;
if (col->next == NULL)
npp->c_tail = col;
else
col->next->prev = col;
npp->c_head = col;
}
else
{ /* insert column to the end of the column list */
col->prev = npp->c_tail;
col->next = NULL;
if (col->prev == NULL)
npp->c_head = col;
else
col->prev->next = col;
npp->c_tail = col;
}
return;
}
void npp_remove_col(NPP *npp, NPPCOL *col)
{ /* remove column from the column list */
if (col->prev == NULL)
npp->c_head = col->next;
else
col->prev->next = col->next;
if (col->next == NULL)
npp->c_tail = col->prev;
else
col->next->prev = col->prev;
return;
}
void npp_activate_col(NPP *npp, NPPCOL *col)
{ /* make column active */
if (!col->temp)
{ col->temp = 1;
/* move the column to the beginning of the column list */
npp_remove_col(npp, col);
npp_insert_col(npp, col, 0);
}
return;
}
void npp_deactivate_col(NPP *npp, NPPCOL *col)
{ /* make column inactive */
if (col->temp)
{ col->temp = 0;
/* move the column to the end of the column list */
npp_remove_col(npp, col);
npp_insert_col(npp, col, 1);
}
return;
}
NPPROW *npp_add_row(NPP *npp)
{ /* add new row to the current problem */
NPPROW *row;
row = dmp_get_atom(npp->pool, sizeof(NPPROW));
row->i = ++(npp->nrows);
row->name = NULL;
row->lb = -DBL_MAX, row->ub = +DBL_MAX;
row->ptr = NULL;
row->temp = 0;
npp_insert_row(npp, row, 1);
return row;
}
NPPCOL *npp_add_col(NPP *npp)
{ /* add new column to the current problem */
NPPCOL *col;
col = dmp_get_atom(npp->pool, sizeof(NPPCOL));
col->j = ++(npp->ncols);
col->name = NULL;
#if 0
col->kind = GLP_CV;
#else
col->is_int = 0;
#endif
col->lb = col->ub = col->coef = 0.0;
col->ptr = NULL;
col->temp = 0;
npp_insert_col(npp, col, 1);
return col;
}
NPPAIJ *npp_add_aij(NPP *npp, NPPROW *row, NPPCOL *col, double val)
{ /* add new element to the constraint matrix */
NPPAIJ *aij;
aij = dmp_get_atom(npp->pool, sizeof(NPPAIJ));
aij->row = row;
aij->col = col;
aij->val = val;
aij->r_prev = NULL;
aij->r_next = row->ptr;
aij->c_prev = NULL;
aij->c_next = col->ptr;
if (aij->r_next != NULL)
aij->r_next->r_prev = aij;
if (aij->c_next != NULL)
aij->c_next->c_prev = aij;
row->ptr = col->ptr = aij;
return aij;
}
int npp_row_nnz(NPP *npp, NPPROW *row)
{ /* count number of non-zero coefficients in row */
NPPAIJ *aij;
int nnz;
xassert(npp == npp);
nnz = 0;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
nnz++;
return nnz;
}
int npp_col_nnz(NPP *npp, NPPCOL *col)
{ /* count number of non-zero coefficients in column */
NPPAIJ *aij;
int nnz;
xassert(npp == npp);
nnz = 0;
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
nnz++;
return nnz;
}
void *npp_push_tse(NPP *npp, int (*func)(NPP *npp, void *info),
int size)
{ /* push new entry to the transformation stack */
NPPTSE *tse;
tse = dmp_get_atom(npp->stack, sizeof(NPPTSE));
tse->func = func;
tse->info = dmp_get_atom(npp->stack, size);
tse->link = npp->top;
npp->top = tse;
return tse->info;
}
#if 1 /* 23/XII-2009 */
void npp_erase_row(NPP *npp, NPPROW *row)
{ /* erase row content to make it empty */
NPPAIJ *aij;
while (row->ptr != NULL)
{ aij = row->ptr;
row->ptr = aij->r_next;
if (aij->c_prev == NULL)
aij->col->ptr = aij->c_next;
else
aij->c_prev->c_next = aij->c_next;
if (aij->c_next == NULL)
;
else
aij->c_next->c_prev = aij->c_prev;
dmp_free_atom(npp->pool, aij, sizeof(NPPAIJ));
}
return;
}
#endif
void npp_del_row(NPP *npp, NPPROW *row)
{ /* remove row from the current problem */
#if 0 /* 23/XII-2009 */
NPPAIJ *aij;
#endif
if (row->name != NULL)
dmp_free_atom(npp->pool, row->name, strlen(row->name)+1);
#if 0 /* 23/XII-2009 */
while (row->ptr != NULL)
{ aij = row->ptr;
row->ptr = aij->r_next;
if (aij->c_prev == NULL)
aij->col->ptr = aij->c_next;
else
aij->c_prev->c_next = aij->c_next;
if (aij->c_next == NULL)
;
else
aij->c_next->c_prev = aij->c_prev;
dmp_free_atom(npp->pool, aij, sizeof(NPPAIJ));
}
#else
npp_erase_row(npp, row);
#endif
npp_remove_row(npp, row);
dmp_free_atom(npp->pool, row, sizeof(NPPROW));
return;
}
void npp_del_col(NPP *npp, NPPCOL *col)
{ /* remove column from the current problem */
NPPAIJ *aij;
if (col->name != NULL)
dmp_free_atom(npp->pool, col->name, strlen(col->name)+1);
while (col->ptr != NULL)
{ aij = col->ptr;
col->ptr = aij->c_next;
if (aij->r_prev == NULL)
aij->row->ptr = aij->r_next;
else
aij->r_prev->r_next = aij->r_next;
if (aij->r_next == NULL)
;
else
aij->r_next->r_prev = aij->r_prev;
dmp_free_atom(npp->pool, aij, sizeof(NPPAIJ));
}
npp_remove_col(npp, col);
dmp_free_atom(npp->pool, col, sizeof(NPPCOL));
return;
}
void npp_del_aij(NPP *npp, NPPAIJ *aij)
{ /* remove element from the constraint matrix */
if (aij->r_prev == NULL)
aij->row->ptr = aij->r_next;
else
aij->r_prev->r_next = aij->r_next;
if (aij->r_next == NULL)
;
else
aij->r_next->r_prev = aij->r_prev;
if (aij->c_prev == NULL)
aij->col->ptr = aij->c_next;
else
aij->c_prev->c_next = aij->c_next;
if (aij->c_next == NULL)
;
else
aij->c_next->c_prev = aij->c_prev;
dmp_free_atom(npp->pool, aij, sizeof(NPPAIJ));
return;
}
void npp_load_prob(NPP *npp, glp_prob *orig, int names, int sol,
int scaling)
{ /* load original problem into the preprocessor workspace */
int m = orig->m;
int n = orig->n;
NPPROW **link;
int i, j;
double dir;
xassert(names == GLP_OFF || names == GLP_ON);
xassert(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP);
xassert(scaling == GLP_OFF || scaling == GLP_ON);
if (sol == GLP_MIP) xassert(!scaling);
npp->orig_dir = orig->dir;
if (npp->orig_dir == GLP_MIN)
dir = +1.0;
else if (npp->orig_dir == GLP_MAX)
dir = -1.0;
else
xassert(npp != npp);
npp->orig_m = m;
npp->orig_n = n;
npp->orig_nnz = orig->nnz;
if (names && orig->name != NULL)
{ npp->name = dmp_get_atom(npp->pool, strlen(orig->name)+1);
strcpy(npp->name, orig->name);
}
if (names && orig->obj != NULL)
{ npp->obj = dmp_get_atom(npp->pool, strlen(orig->obj)+1);
strcpy(npp->obj, orig->obj);
}
npp->c0 = dir * orig->c0;
/* load rows */
link = xcalloc(1+m, sizeof(NPPROW *));
for (i = 1; i <= m; i++)
{ GLPROW *rrr = orig->row[i];
NPPROW *row;
link[i] = row = npp_add_row(npp);
xassert(row->i == i);
if (names && rrr->name != NULL)
{ row->name = dmp_get_atom(npp->pool, strlen(rrr->name)+1);
strcpy(row->name, rrr->name);
}
if (!scaling)
{ if (rrr->type == GLP_FR)
row->lb = -DBL_MAX, row->ub = +DBL_MAX;
else if (rrr->type == GLP_LO)
row->lb = rrr->lb, row->ub = +DBL_MAX;
else if (rrr->type == GLP_UP)
row->lb = -DBL_MAX, row->ub = rrr->ub;
else if (rrr->type == GLP_DB)
row->lb = rrr->lb, row->ub = rrr->ub;
else if (rrr->type == GLP_FX)
row->lb = row->ub = rrr->lb;
else
xassert(rrr != rrr);
}
else
{ double rii = rrr->rii;
if (rrr->type == GLP_FR)
row->lb = -DBL_MAX, row->ub = +DBL_MAX;
else if (rrr->type == GLP_LO)
row->lb = rrr->lb * rii, row->ub = +DBL_MAX;
else if (rrr->type == GLP_UP)
row->lb = -DBL_MAX, row->ub = rrr->ub * rii;
else if (rrr->type == GLP_DB)
row->lb = rrr->lb * rii, row->ub = rrr->ub * rii;
else if (rrr->type == GLP_FX)
row->lb = row->ub = rrr->lb * rii;
else
xassert(rrr != rrr);
}
}
/* load columns and constraint coefficients */
for (j = 1; j <= n; j++)
{ GLPCOL *ccc = orig->col[j];
GLPAIJ *aaa;
NPPCOL *col;
col = npp_add_col(npp);
xassert(col->j == j);
if (names && ccc->name != NULL)
{ col->name = dmp_get_atom(npp->pool, strlen(ccc->name)+1);
strcpy(col->name, ccc->name);
}
if (sol == GLP_MIP)
#if 0
col->kind = ccc->kind;
#else
col->is_int = (char)(ccc->kind == GLP_IV);
#endif
if (!scaling)
{ if (ccc->type == GLP_FR)
col->lb = -DBL_MAX, col->ub = +DBL_MAX;
else if (ccc->type == GLP_LO)
col->lb = ccc->lb, col->ub = +DBL_MAX;
else if (ccc->type == GLP_UP)
col->lb = -DBL_MAX, col->ub = ccc->ub;
else if (ccc->type == GLP_DB)
col->lb = ccc->lb, col->ub = ccc->ub;
else if (ccc->type == GLP_FX)
col->lb = col->ub = ccc->lb;
else
xassert(ccc != ccc);
col->coef = dir * ccc->coef;
for (aaa = ccc->ptr; aaa != NULL; aaa = aaa->c_next)
npp_add_aij(npp, link[aaa->row->i], col, aaa->val);
}
else
{ double sjj = ccc->sjj;
if (ccc->type == GLP_FR)
col->lb = -DBL_MAX, col->ub = +DBL_MAX;
else if (ccc->type == GLP_LO)
col->lb = ccc->lb / sjj, col->ub = +DBL_MAX;
else if (ccc->type == GLP_UP)
col->lb = -DBL_MAX, col->ub = ccc->ub / sjj;
else if (ccc->type == GLP_DB)
col->lb = ccc->lb / sjj, col->ub = ccc->ub / sjj;
else if (ccc->type == GLP_FX)
col->lb = col->ub = ccc->lb / sjj;
else
xassert(ccc != ccc);
col->coef = dir * ccc->coef * sjj;
for (aaa = ccc->ptr; aaa != NULL; aaa = aaa->c_next)
npp_add_aij(npp, link[aaa->row->i], col,
aaa->row->rii * aaa->val * sjj);
}
}
xfree(link);
/* keep solution indicator and scaling option */
npp->sol = sol;
npp->scaling = scaling;
return;
}
void npp_build_prob(NPP *npp, glp_prob *prob)
{ /* build resultant (preprocessed) problem */
NPPROW *row;
NPPCOL *col;
NPPAIJ *aij;
int i, j, type, len, *ind;
double dir, *val;
glp_erase_prob(prob);
glp_set_prob_name(prob, npp->name);
glp_set_obj_name(prob, npp->obj);
glp_set_obj_dir(prob, npp->orig_dir);
if (npp->orig_dir == GLP_MIN)
dir = +1.0;
else if (npp->orig_dir == GLP_MAX)
dir = -1.0;
else
xassert(npp != npp);
glp_set_obj_coef(prob, 0, dir * npp->c0);
/* build rows */
for (row = npp->r_head; row != NULL; row = row->next)
{ row->temp = i = glp_add_rows(prob, 1);
glp_set_row_name(prob, i, row->name);
if (row->lb == -DBL_MAX && row->ub == +DBL_MAX)
type = GLP_FR;
else if (row->ub == +DBL_MAX)
type = GLP_LO;
else if (row->lb == -DBL_MAX)
type = GLP_UP;
else if (row->lb != row->ub)
type = GLP_DB;
else
type = GLP_FX;
glp_set_row_bnds(prob, i, type, row->lb, row->ub);
}
/* build columns and the constraint matrix */
ind = xcalloc(1+prob->m, sizeof(int));
val = xcalloc(1+prob->m, sizeof(double));
for (col = npp->c_head; col != NULL; col = col->next)
{ j = glp_add_cols(prob, 1);
glp_set_col_name(prob, j, col->name);
#if 0
glp_set_col_kind(prob, j, col->kind);
#else
glp_set_col_kind(prob, j, col->is_int ? GLP_IV : GLP_CV);
#endif
if (col->lb == -DBL_MAX && col->ub == +DBL_MAX)
type = GLP_FR;
else if (col->ub == +DBL_MAX)
type = GLP_LO;
else if (col->lb == -DBL_MAX)
type = GLP_UP;
else if (col->lb != col->ub)
type = GLP_DB;
else
type = GLP_FX;
glp_set_col_bnds(prob, j, type, col->lb, col->ub);
glp_set_obj_coef(prob, j, dir * col->coef);
len = 0;
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
{ len++;
ind[len] = aij->row->temp;
val[len] = aij->val;
}
glp_set_mat_col(prob, j, len, ind, val);
}
xfree(ind);
xfree(val);
/* resultant problem has been built */
npp->m = prob->m;
npp->n = prob->n;
npp->nnz = prob->nnz;
npp->row_ref = xcalloc(1+npp->m, sizeof(int));
npp->col_ref = xcalloc(1+npp->n, sizeof(int));
for (row = npp->r_head, i = 0; row != NULL; row = row->next)
npp->row_ref[++i] = row->i;
for (col = npp->c_head, j = 0; col != NULL; col = col->next)
npp->col_ref[++j] = col->j;
/* transformed problem segment is no longer needed */
dmp_delete_pool(npp->pool), npp->pool = NULL;
npp->name = npp->obj = NULL;
npp->c0 = 0.0;
npp->r_head = npp->r_tail = NULL;
npp->c_head = npp->c_tail = NULL;
return;
}
void npp_postprocess(NPP *npp, glp_prob *prob)
{ /* postprocess solution from the resultant problem */
GLPROW *row;
GLPCOL *col;
NPPTSE *tse;
int i, j, k;
double dir;
xassert(npp->orig_dir == prob->dir);
if (npp->orig_dir == GLP_MIN)
dir = +1.0;
else if (npp->orig_dir == GLP_MAX)
dir = -1.0;
else
xassert(npp != npp);
#if 0 /* 11/VII-2013; due to call from ios_main */
xassert(npp->m == prob->m);
#else
if (npp->sol != GLP_MIP)
xassert(npp->m == prob->m);
#endif
xassert(npp->n == prob->n);
#if 0 /* 11/VII-2013; due to call from ios_main */
xassert(npp->nnz == prob->nnz);
#else
if (npp->sol != GLP_MIP)
xassert(npp->nnz == prob->nnz);
#endif
/* copy solution status */
if (npp->sol == GLP_SOL)
{ npp->p_stat = prob->pbs_stat;
npp->d_stat = prob->dbs_stat;
}
else if (npp->sol == GLP_IPT)
npp->t_stat = prob->ipt_stat;
else if (npp->sol == GLP_MIP)
npp->i_stat = prob->mip_stat;
else
xassert(npp != npp);
/* allocate solution arrays */
if (npp->sol == GLP_SOL)
{ if (npp->r_stat == NULL)
npp->r_stat = xcalloc(1+npp->nrows, sizeof(char));
for (i = 1; i <= npp->nrows; i++)
npp->r_stat[i] = 0;
if (npp->c_stat == NULL)
npp->c_stat = xcalloc(1+npp->ncols, sizeof(char));
for (j = 1; j <= npp->ncols; j++)
npp->c_stat[j] = 0;
}
#if 0
if (npp->r_prim == NULL)
npp->r_prim = xcalloc(1+npp->nrows, sizeof(double));
for (i = 1; i <= npp->nrows; i++)
npp->r_prim[i] = DBL_MAX;
#endif
if (npp->c_value == NULL)
npp->c_value = xcalloc(1+npp->ncols, sizeof(double));
for (j = 1; j <= npp->ncols; j++)
npp->c_value[j] = DBL_MAX;
if (npp->sol != GLP_MIP)
{ if (npp->r_pi == NULL)
npp->r_pi = xcalloc(1+npp->nrows, sizeof(double));
for (i = 1; i <= npp->nrows; i++)
npp->r_pi[i] = DBL_MAX;
#if 0
if (npp->c_dual == NULL)
npp->c_dual = xcalloc(1+npp->ncols, sizeof(double));
for (j = 1; j <= npp->ncols; j++)
npp->c_dual[j] = DBL_MAX;
#endif
}
/* copy solution components from the resultant problem */
if (npp->sol == GLP_SOL)
{ for (i = 1; i <= npp->m; i++)
{ row = prob->row[i];
k = npp->row_ref[i];
npp->r_stat[k] = (char)row->stat;
/*npp->r_prim[k] = row->prim;*/
npp->r_pi[k] = dir * row->dual;
}
for (j = 1; j <= npp->n; j++)
{ col = prob->col[j];
k = npp->col_ref[j];
npp->c_stat[k] = (char)col->stat;
npp->c_value[k] = col->prim;
/*npp->c_dual[k] = dir * col->dual;*/
}
}
else if (npp->sol == GLP_IPT)
{ for (i = 1; i <= npp->m; i++)
{ row = prob->row[i];
k = npp->row_ref[i];
/*npp->r_prim[k] = row->pval;*/
npp->r_pi[k] = dir * row->dval;
}
for (j = 1; j <= npp->n; j++)
{ col = prob->col[j];
k = npp->col_ref[j];
npp->c_value[k] = col->pval;
/*npp->c_dual[k] = dir * col->dval;*/
}
}
else if (npp->sol == GLP_MIP)
{
#if 0
for (i = 1; i <= npp->m; i++)
{ row = prob->row[i];
k = npp->row_ref[i];
/*npp->r_prim[k] = row->mipx;*/
}
#endif
for (j = 1; j <= npp->n; j++)
{ col = prob->col[j];
k = npp->col_ref[j];
npp->c_value[k] = col->mipx;
}
}
else
xassert(npp != npp);
/* perform postprocessing to construct solution to the original
problem */
for (tse = npp->top; tse != NULL; tse = tse->link)
{ xassert(tse->func != NULL);
xassert(tse->func(npp, tse->info) == 0);
}
return;
}
void npp_unload_sol(NPP *npp, glp_prob *orig)
{ /* store solution to the original problem */
GLPROW *row;
GLPCOL *col;
int i, j;
double dir;
xassert(npp->orig_dir == orig->dir);
if (npp->orig_dir == GLP_MIN)
dir = +1.0;
else if (npp->orig_dir == GLP_MAX)
dir = -1.0;
else
xassert(npp != npp);
xassert(npp->orig_m == orig->m);
xassert(npp->orig_n == orig->n);
xassert(npp->orig_nnz == orig->nnz);
if (npp->sol == GLP_SOL)
{ /* store basic solution */
orig->valid = 0;
orig->pbs_stat = npp->p_stat;
orig->dbs_stat = npp->d_stat;
orig->obj_val = orig->c0;
orig->some = 0;
for (i = 1; i <= orig->m; i++)
{ row = orig->row[i];
row->stat = npp->r_stat[i];
if (!npp->scaling)
{ /*row->prim = npp->r_prim[i];*/
row->dual = dir * npp->r_pi[i];
}
else
{ /*row->prim = npp->r_prim[i] / row->rii;*/
row->dual = dir * npp->r_pi[i] * row->rii;
}
if (row->stat == GLP_BS)
row->dual = 0.0;
else if (row->stat == GLP_NL)
{ xassert(row->type == GLP_LO || row->type == GLP_DB);
row->prim = row->lb;
}
else if (row->stat == GLP_NU)
{ xassert(row->type == GLP_UP || row->type == GLP_DB);
row->prim = row->ub;
}
else if (row->stat == GLP_NF)
{ xassert(row->type == GLP_FR);
row->prim = 0.0;
}
else if (row->stat == GLP_NS)
{ xassert(row->type == GLP_FX);
row->prim = row->lb;
}
else
xassert(row != row);
}
for (j = 1; j <= orig->n; j++)
{ col = orig->col[j];
col->stat = npp->c_stat[j];
if (!npp->scaling)
{ col->prim = npp->c_value[j];
/*col->dual = dir * npp->c_dual[j];*/
}
else
{ col->prim = npp->c_value[j] * col->sjj;
/*col->dual = dir * npp->c_dual[j] / col->sjj;*/
}
if (col->stat == GLP_BS)
col->dual = 0.0;
#if 1
else if (col->stat == GLP_NL)
{ xassert(col->type == GLP_LO || col->type == GLP_DB);
col->prim = col->lb;
}
else if (col->stat == GLP_NU)
{ xassert(col->type == GLP_UP || col->type == GLP_DB);
col->prim = col->ub;
}
else if (col->stat == GLP_NF)
{ xassert(col->type == GLP_FR);
col->prim = 0.0;
}
else if (col->stat == GLP_NS)
{ xassert(col->type == GLP_FX);
col->prim = col->lb;
}
else
xassert(col != col);
#endif
orig->obj_val += col->coef * col->prim;
}
#if 1
/* compute primal values of inactive rows */
for (i = 1; i <= orig->m; i++)
{ row = orig->row[i];
if (row->stat == GLP_BS)
{ GLPAIJ *aij;
double temp;
temp = 0.0;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
temp += aij->val * aij->col->prim;
row->prim = temp;
}
}
/* compute reduced costs of active columns */
for (j = 1; j <= orig->n; j++)
{ col = orig->col[j];
if (col->stat != GLP_BS)
{ GLPAIJ *aij;
double temp;
temp = col->coef;
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
temp -= aij->val * aij->row->dual;
col->dual = temp;
}
}
#endif
}
else if (npp->sol == GLP_IPT)
{ /* store interior-point solution */
orig->ipt_stat = npp->t_stat;
orig->ipt_obj = orig->c0;
for (i = 1; i <= orig->m; i++)
{ row = orig->row[i];
if (!npp->scaling)
{ /*row->pval = npp->r_prim[i];*/
row->dval = dir * npp->r_pi[i];
}
else
{ /*row->pval = npp->r_prim[i] / row->rii;*/
row->dval = dir * npp->r_pi[i] * row->rii;
}
}
for (j = 1; j <= orig->n; j++)
{ col = orig->col[j];
if (!npp->scaling)
{ col->pval = npp->c_value[j];
/*col->dval = dir * npp->c_dual[j];*/
}
else
{ col->pval = npp->c_value[j] * col->sjj;
/*col->dval = dir * npp->c_dual[j] / col->sjj;*/
}
orig->ipt_obj += col->coef * col->pval;
}
#if 1
/* compute row primal values */
for (i = 1; i <= orig->m; i++)
{ row = orig->row[i];
{ GLPAIJ *aij;
double temp;
temp = 0.0;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
temp += aij->val * aij->col->pval;
row->pval = temp;
}
}
/* compute column dual values */
for (j = 1; j <= orig->n; j++)
{ col = orig->col[j];
{ GLPAIJ *aij;
double temp;
temp = col->coef;
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
temp -= aij->val * aij->row->dval;
col->dval = temp;
}
}
#endif
}
else if (npp->sol == GLP_MIP)
{ /* store MIP solution */
xassert(!npp->scaling);
orig->mip_stat = npp->i_stat;
orig->mip_obj = orig->c0;
#if 0
for (i = 1; i <= orig->m; i++)
{ row = orig->row[i];
/*row->mipx = npp->r_prim[i];*/
}
#endif
for (j = 1; j <= orig->n; j++)
{ col = orig->col[j];
col->mipx = npp->c_value[j];
if (col->kind == GLP_IV)
xassert(col->mipx == floor(col->mipx));
orig->mip_obj += col->coef * col->mipx;
}
#if 1
/* compute row primal values */
for (i = 1; i <= orig->m; i++)
{ row = orig->row[i];
{ GLPAIJ *aij;
double temp;
temp = 0.0;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
temp += aij->val * aij->col->mipx;
row->mipx = temp;
}
}
#endif
}
else
xassert(npp != npp);
return;
}
void npp_delete_wksp(NPP *npp)
{ /* delete LP/MIP preprocessor workspace */
if (npp->pool != NULL)
dmp_delete_pool(npp->pool);
if (npp->stack != NULL)
dmp_delete_pool(npp->stack);
if (npp->row_ref != NULL)
xfree(npp->row_ref);
if (npp->col_ref != NULL)
xfree(npp->col_ref);
if (npp->r_stat != NULL)
xfree(npp->r_stat);
#if 0
if (npp->r_prim != NULL)
xfree(npp->r_prim);
#endif
if (npp->r_pi != NULL)
xfree(npp->r_pi);
if (npp->c_stat != NULL)
xfree(npp->c_stat);
if (npp->c_value != NULL)
xfree(npp->c_value);
#if 0
if (npp->c_dual != NULL)
xfree(npp->c_dual);
#endif
xfree(npp);
return;
}
/* eof */