You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							196 lines
						
					
					
						
							7.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							196 lines
						
					
					
						
							7.0 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								// The computeRoots function included in this is based on materials
							 | 
						|
								// covered by the following copyright and license:
							 | 
						|
								// 
							 | 
						|
								// Geometric Tools, LLC
							 | 
						|
								// Copyright (c) 1998-2010
							 | 
						|
								// Distributed under the Boost Software License, Version 1.0.
							 | 
						|
								// 
							 | 
						|
								// Permission is hereby granted, free of charge, to any person or organization
							 | 
						|
								// obtaining a copy of the software and accompanying documentation covered by
							 | 
						|
								// this license (the "Software") to use, reproduce, display, distribute,
							 | 
						|
								// execute, and transmit the Software, and to prepare derivative works of the
							 | 
						|
								// Software, and to permit third-parties to whom the Software is furnished to
							 | 
						|
								// do so, all subject to the following:
							 | 
						|
								// 
							 | 
						|
								// The copyright notices in the Software and this entire statement, including
							 | 
						|
								// the above license grant, this restriction and the following disclaimer,
							 | 
						|
								// must be included in all copies of the Software, in whole or in part, and
							 | 
						|
								// all derivative works of the Software, unless such copies or derivative
							 | 
						|
								// works are solely in the form of machine-executable object code generated by
							 | 
						|
								// a source language processor.
							 | 
						|
								// 
							 | 
						|
								// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
							 | 
						|
								// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
							 | 
						|
								// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
							 | 
						|
								// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
							 | 
						|
								// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
							 | 
						|
								// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
							 | 
						|
								// DEALINGS IN THE SOFTWARE.
							 | 
						|
								
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <Eigen/Core>
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								#include <Eigen/Geometry>
							 | 
						|
								#include <bench/BenchTimer.h>
							 | 
						|
								
							 | 
						|
								using namespace Eigen;
							 | 
						|
								using namespace std;
							 | 
						|
								
							 | 
						|
								template<typename Matrix, typename Roots>
							 | 
						|
								inline void computeRoots(const Matrix& m, Roots& roots)
							 | 
						|
								{
							 | 
						|
								  typedef typename Matrix::Scalar Scalar;
							 | 
						|
								  const Scalar s_inv3 = 1.0/3.0;
							 | 
						|
								  const Scalar s_sqrt3 = internal::sqrt(Scalar(3.0));
							 | 
						|
								
							 | 
						|
								  // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
							 | 
						|
								  // eigenvalues are the roots to this equation, all guaranteed to be
							 | 
						|
								  // real-valued, because the matrix is symmetric.
							 | 
						|
								  Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
							 | 
						|
								  Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
							 | 
						|
								  Scalar c2 = m(0,0) + m(1,1) + m(2,2);
							 | 
						|
								
							 | 
						|
								  // Construct the parameters used in classifying the roots of the equation
							 | 
						|
								  // and in solving the equation for the roots in closed form.
							 | 
						|
								  Scalar c2_over_3 = c2*s_inv3;
							 | 
						|
								  Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
							 | 
						|
								  if (a_over_3 > Scalar(0))
							 | 
						|
								    a_over_3 = Scalar(0);
							 | 
						|
								
							 | 
						|
								  Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
							 | 
						|
								
							 | 
						|
								  Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
							 | 
						|
								  if (q > Scalar(0))
							 | 
						|
								    q = Scalar(0);
							 | 
						|
								
							 | 
						|
								  // Compute the eigenvalues by solving for the roots of the polynomial.
							 | 
						|
								  Scalar rho = internal::sqrt(-a_over_3);
							 | 
						|
								  Scalar theta = std::atan2(internal::sqrt(-q),half_b)*s_inv3;
							 | 
						|
								  Scalar cos_theta = internal::cos(theta);
							 | 
						|
								  Scalar sin_theta = internal::sin(theta);
							 | 
						|
								  roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
							 | 
						|
								  roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
							 | 
						|
								  roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
							 | 
						|
								
							 | 
						|
								  // Sort in increasing order.
							 | 
						|
								  if (roots(0) >= roots(1))
							 | 
						|
								    std::swap(roots(0),roots(1));
							 | 
						|
								  if (roots(1) >= roots(2))
							 | 
						|
								  {
							 | 
						|
								    std::swap(roots(1),roots(2));
							 | 
						|
								    if (roots(0) >= roots(1))
							 | 
						|
								      std::swap(roots(0),roots(1));
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Matrix, typename Vector>
							 | 
						|
								void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
							 | 
						|
								{
							 | 
						|
								  typedef typename Matrix::Scalar Scalar;
							 | 
						|
								  // Scale the matrix so its entries are in [-1,1].  The scaling is applied
							 | 
						|
								  // only when at least one matrix entry has magnitude larger than 1.
							 | 
						|
								
							 | 
						|
								  Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
							 | 
						|
								  scale = std::max(scale,Scalar(1));
							 | 
						|
								  Matrix scaledMat = mat / scale;
							 | 
						|
								
							 | 
						|
								  // Compute the eigenvalues
							 | 
						|
								//   scaledMat.setZero();
							 | 
						|
								  computeRoots(scaledMat,evals);
							 | 
						|
								
							 | 
						|
								  // compute the eigen vectors
							 | 
						|
								  // **here we assume 3 differents eigenvalues**
							 | 
						|
								
							 | 
						|
								  // "optimized version" which appears to be slower with gcc!
							 | 
						|
								//     Vector base;
							 | 
						|
								//     Scalar alpha, beta;
							 | 
						|
								//     base <<   scaledMat(1,0) * scaledMat(2,1),
							 | 
						|
								//               scaledMat(1,0) * scaledMat(2,0),
							 | 
						|
								//              -scaledMat(1,0) * scaledMat(1,0);
							 | 
						|
								//     for(int k=0; k<2; ++k)
							 | 
						|
								//     {
							 | 
						|
								//       alpha = scaledMat(0,0) - evals(k);
							 | 
						|
								//       beta  = scaledMat(1,1) - evals(k);
							 | 
						|
								//       evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
							 | 
						|
								//     }
							 | 
						|
								//     evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
							 | 
						|
								
							 | 
						|
								//   // naive version
							 | 
						|
								//   Matrix tmp;
							 | 
						|
								//   tmp = scaledMat;
							 | 
						|
								//   tmp.diagonal().array() -= evals(0);
							 | 
						|
								//   evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
							 | 
						|
								// 
							 | 
						|
								//   tmp = scaledMat;
							 | 
						|
								//   tmp.diagonal().array() -= evals(1);
							 | 
						|
								//   evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
							 | 
						|
								// 
							 | 
						|
								//   tmp = scaledMat;
							 | 
						|
								//   tmp.diagonal().array() -= evals(2);
							 | 
						|
								//   evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
							 | 
						|
								  
							 | 
						|
								  // a more stable version:
							 | 
						|
								  if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon())
							 | 
						|
								  {
							 | 
						|
								    evecs.setIdentity();
							 | 
						|
								  }
							 | 
						|
								  else
							 | 
						|
								  {
							 | 
						|
								    Matrix tmp;
							 | 
						|
								    tmp = scaledMat;
							 | 
						|
								    tmp.diagonal ().array () -= evals (2);
							 | 
						|
								    evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized ();
							 | 
						|
								    
							 | 
						|
								    tmp = scaledMat;
							 | 
						|
								    tmp.diagonal ().array () -= evals (1);
							 | 
						|
								    evecs.col(1) = tmp.row (0).cross(tmp.row (1));
							 | 
						|
								    Scalar n1 = evecs.col(1).norm();
							 | 
						|
								    if(n1<=Eigen::NumTraits<Scalar>::epsilon())
							 | 
						|
								      evecs.col(1) = evecs.col(2).unitOrthogonal();
							 | 
						|
								    else
							 | 
						|
								      evecs.col(1) /= n1;
							 | 
						|
								    
							 | 
						|
								    // make sure that evecs[1] is orthogonal to evecs[2]
							 | 
						|
								    evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
							 | 
						|
								    evecs.col(0) = evecs.col(2).cross(evecs.col(1));
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // Rescale back to the original size.
							 | 
						|
								  evals *= scale;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								int main()
							 | 
						|
								{
							 | 
						|
								  BenchTimer t;
							 | 
						|
								  int tries = 10;
							 | 
						|
								  int rep = 400000;
							 | 
						|
								  typedef Matrix3f Mat;
							 | 
						|
								  typedef Vector3f Vec;
							 | 
						|
								  Mat A = Mat::Random(3,3);
							 | 
						|
								  A = A.adjoint() * A;
							 | 
						|
								
							 | 
						|
								  SelfAdjointEigenSolver<Mat> eig(A);
							 | 
						|
								  BENCH(t, tries, rep, eig.compute(A));
							 | 
						|
								  std::cout << "Eigen:  " << t.best() << "s\n";
							 | 
						|
								
							 | 
						|
								  Mat evecs;
							 | 
						|
								  Vec evals;
							 | 
						|
								  BENCH(t, tries, rep, eigen33(A,evecs,evals));
							 | 
						|
								  std::cout << "Direct: " << t.best() << "s\n\n";
							 | 
						|
								
							 | 
						|
								  std::cerr << "Eigenvalue/eigenvector diffs:\n";
							 | 
						|
								  std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
							 | 
						|
								  for(int k=0;k<3;++k)
							 | 
						|
								    if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
							 | 
						|
								      evecs.col(k) = -evecs.col(k);
							 | 
						|
								  std::cerr << evecs - eig.eigenvectors() << "\n\n";
							 | 
						|
								}
							 |