You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							879 lines
						
					
					
						
							40 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							879 lines
						
					
					
						
							40 KiB
						
					
					
				
								#include "basicValueIteration.h"
							 | 
						|
								#define CUSP_USE_TEXTURE_MEMORY
							 | 
						|
								
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <chrono>
							 | 
						|
								
							 | 
						|
								#include <cuda_runtime.h>
							 | 
						|
								#include "cusparse_v2.h"
							 | 
						|
								
							 | 
						|
								#include "utility.h"
							 | 
						|
								
							 | 
						|
								#include "cuspExtension.h"
							 | 
						|
								
							 | 
						|
								#include <thrust/transform.h>
							 | 
						|
								#include <thrust/device_ptr.h>
							 | 
						|
								#include <thrust/functional.h>
							 | 
						|
								
							 | 
						|
								#include "storm-cudaplugin-config.h"
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
								#define CUDA_CHECK_ALL_ERRORS() do { cudaError_t errSync  = cudaGetLastError(); cudaError_t errAsync = cudaDeviceSynchronize();	if (errSync != cudaSuccess) { std::cout << "(DLL) Sync kernel error: " << cudaGetErrorString(errSync) << " (Code: " << errSync << ") in Line " << __LINE__ << std::endl; } if (errAsync != cudaSuccess) { std::cout << "(DLL) Async kernel error: " << cudaGetErrorString(errAsync) << " (Code: " << errAsync << ") in Line " << __LINE__ << std::endl; } } while(false)
							 | 
						|
								#else
							 | 
						|
								#define CUDA_CHECK_ALL_ERRORS() do {} while (false)
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								template<typename T, bool Relative>
							 | 
						|
								struct equalModuloPrecision : public thrust::binary_function<T,T,T>
							 | 
						|
								{
							 | 
						|
								__host__ __device__ T operator()(const T &x, const T &y) const
							 | 
						|
								{
							 | 
						|
								    if (Relative) {
							 | 
						|
										if (y == 0) {
							 | 
						|
											return ((x >= 0) ? (x) : (-x));
							 | 
						|
										}
							 | 
						|
										const T result = (x - y) / y;
							 | 
						|
										return ((result >= 0) ? (result) : (-result));
							 | 
						|
								    } else {
							 | 
						|
								        const T result = (x - y);
							 | 
						|
										return ((result >= 0) ? (result) : (-result));
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename IndexType, typename ValueType>
							 | 
						|
								void exploadVector(std::vector<std::pair<IndexType, ValueType>> const& inputVector, std::vector<IndexType>& indexVector, std::vector<ValueType>& valueVector) {
							 | 
						|
									indexVector.reserve(inputVector.size());
							 | 
						|
									valueVector.reserve(inputVector.size());
							 | 
						|
									for (size_t i = 0; i < inputVector.size(); ++i) {
							 | 
						|
										indexVector.push_back(inputVector.at(i).first);
							 | 
						|
										valueVector.push_back(inputVector.at(i).second);
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// TEMPLATE VERSION
							 | 
						|
								template <bool Minimize, bool Relative, typename IndexType, typename ValueType>
							 | 
						|
								bool basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, double const precision, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<IndexType> const& nondeterministicChoiceIndices, size_t& iterationCount) {
							 | 
						|
									//std::vector<IndexType> matrixColumnIndices;
							 | 
						|
									//std::vector<ValueType> matrixValues;
							 | 
						|
									//exploadVector<IndexType, ValueType>(columnIndicesAndValues, matrixColumnIndices, matrixValues);
							 | 
						|
									bool errorOccured = false;
							 | 
						|
								
							 | 
						|
									IndexType* device_matrixRowIndices = nullptr;
							 | 
						|
									ValueType* device_matrixColIndicesAndValues = nullptr;
							 | 
						|
									ValueType* device_x = nullptr;
							 | 
						|
									ValueType* device_xSwap = nullptr;
							 | 
						|
									ValueType* device_b = nullptr;
							 | 
						|
									ValueType* device_multiplyResult = nullptr;
							 | 
						|
									IndexType* device_nondeterministicChoiceIndices = nullptr;
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout.sync_with_stdio(true);
							 | 
						|
									std::cout << "(DLL) Entering CUDA Function: basicValueIteration_mvReduce" << std::endl;
							 | 
						|
									std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%)." << std::endl;
							 | 
						|
									size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size() + sizeof(ValueType) * b.size() + sizeof(IndexType) * nondeterministicChoiceIndices.size();
							 | 
						|
									std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									const IndexType matrixRowCount = matrixRowIndices.size() - 1;
							 | 
						|
									const IndexType matrixColCount = nondeterministicChoiceIndices.size() - 1;
							 | 
						|
									const IndexType matrixNnzCount = columnIndicesAndValues.size();
							 | 
						|
								
							 | 
						|
									cudaError_t cudaMallocResult;
							 | 
						|
								
							 | 
						|
									bool converged = false;
							 | 
						|
									iterationCount = 0;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
							 | 
						|
								#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE true
							 | 
						|
								#else
							 | 
						|
								#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE false
							 | 
						|
								#endif
							 | 
						|
									if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
										cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
							 | 
						|
										if (cudaMallocResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
											goto cleanup;
							 | 
						|
										}
							 | 
						|
									} else {
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
										cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
							 | 
						|
										if (cudaMallocResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
											goto cleanup;
							 | 
						|
										}
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_xSwap), sizeof(ValueType) * matrixColCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector x swap, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * matrixRowCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_nondeterministicChoiceIndices), sizeof(IndexType) * (matrixColCount + 1));
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished allocating memory." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									// Memory allocated, copy data to device
							 | 
						|
									cudaError_t cudaCopyResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Copy all data as floats are expanded to 64bits :/
							 | 
						|
									if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
										cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
							 | 
						|
										if (cudaCopyResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
											goto cleanup;
							 | 
						|
										}
							 | 
						|
									} else {
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
										cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
							 | 
						|
										if (cudaCopyResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
											goto cleanup;
							 | 
						|
										}
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Preset the xSwap to zeros...
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemset(device_xSwap, 0, sizeof(ValueType) * matrixColCount);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not zero the Swap Vector x, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * matrixRowCount, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Preset the multiplyResult to zeros...
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(IndexType) * (matrixColCount + 1), cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									// Data is on device, start Kernel
							 | 
						|
									while (!converged && iterationCount < maxIterationCount) { // In a sub-area since transfer of control via label evades initialization
							 | 
						|
										cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
								
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_multiplyResult(device_multiplyResult);
							 | 
						|
								
							 | 
						|
										// Transform: Add multiplyResult + b inplace to multiplyResult
							 | 
						|
										thrust::transform(devicePtrThrust_multiplyResult, devicePtrThrust_multiplyResult + matrixRowCount, devicePtrThrust_b, devicePtrThrust_multiplyResult, thrust::plus<ValueType>());
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
								
							 | 
						|
										// Reduce: Reduce multiplyResult to a new x vector
							 | 
						|
										cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(matrixColCount, matrixRowCount, device_nondeterministicChoiceIndices, device_xSwap, device_multiplyResult);
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
								
							 | 
						|
										// Check for convergence
							 | 
						|
										// Transform: x = abs(x - xSwap)/ xSwap
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_x_end(device_x + matrixColCount);
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_xSwap(device_xSwap);
							 | 
						|
										thrust::transform(devicePtrThrust_x, devicePtrThrust_x_end, devicePtrThrust_xSwap, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
								
							 | 
						|
										// Reduce: get Max over x and check for res < Precision
							 | 
						|
										ValueType maxX = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x_end, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
										converged = (maxX < precision);
							 | 
						|
										++iterationCount;
							 | 
						|
								
							 | 
						|
										// Swap pointers, device_x always contains the most current result
							 | 
						|
										std::swap(device_x, device_xSwap);
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									if (!converged && (iterationCount == maxIterationCount)) {
							 | 
						|
										iterationCount = 0;
							 | 
						|
										errorOccured = true;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished kernel execution." << std::endl;
							 | 
						|
									std::cout << "(DLL) Executed " << iterationCount << " of max. " << maxIterationCount << " Iterations." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									// Get x back from the device
							 | 
						|
									cudaCopyResult = cudaMemcpy(x.data(), device_x, sizeof(ValueType) * matrixColCount, cudaMemcpyDeviceToHost);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy back data for result vector x, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										errorOccured = true;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished copying result data." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									// All code related to freeing memory and clearing up the device
							 | 
						|
								cleanup:
							 | 
						|
									if (device_matrixRowIndices != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
										}
							 | 
						|
										device_matrixRowIndices = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_matrixColIndicesAndValues != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
										}
							 | 
						|
										device_matrixColIndicesAndValues = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_x != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_x);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
										}
							 | 
						|
										device_x = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_xSwap != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_xSwap);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector x swap, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
										}
							 | 
						|
										device_xSwap = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_b != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_b);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
										}
							 | 
						|
										device_b = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_multiplyResult != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
										}
							 | 
						|
										device_multiplyResult = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_nondeterministicChoiceIndices != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_nondeterministicChoiceIndices);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Nondeterministic Choice Indices, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
											errorOccured = true;
							 | 
						|
										}
							 | 
						|
										device_nondeterministicChoiceIndices = nullptr;
							 | 
						|
									}
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished cleanup." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									return !errorOccured;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename IndexType, typename ValueType>
							 | 
						|
								void basicValueIteration_spmv(uint_fast64_t const matrixColCount, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>> const& columnIndicesAndValues, std::vector<ValueType> const& x, std::vector<ValueType>& b) {
							 | 
						|
									IndexType* device_matrixRowIndices = nullptr;
							 | 
						|
									ValueType* device_matrixColIndicesAndValues = nullptr;
							 | 
						|
									ValueType* device_x = nullptr;
							 | 
						|
									ValueType* device_multiplyResult = nullptr;
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout.sync_with_stdio(true);
							 | 
						|
									std::cout << "(DLL) Entering CUDA Function: basicValueIteration_spmv" << std::endl;
							 | 
						|
									std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory()))*100 << "%)." << std::endl; 
							 | 
						|
									size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size();
							 | 
						|
									std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									const IndexType matrixRowCount = matrixRowIndices.size() - 1;
							 | 
						|
									const IndexType matrixNnzCount = columnIndicesAndValues.size();
							 | 
						|
								
							 | 
						|
									cudaError_t cudaMallocResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								#else
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished allocating memory." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									// Memory allocated, copy data to device
							 | 
						|
									cudaError_t cudaCopyResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								#else
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Preset the multiplyResult to zeros...
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished kernel execution." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									// Get result back from the device
							 | 
						|
									cudaCopyResult = cudaMemcpy(b.data(), device_multiplyResult, sizeof(ValueType) * matrixRowCount, cudaMemcpyDeviceToHost);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished copying result data." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
									// All code related to freeing memory and clearing up the device
							 | 
						|
								cleanup:
							 | 
						|
									if (device_matrixRowIndices != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_matrixRowIndices = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_matrixColIndicesAndValues != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_matrixColIndicesAndValues = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_x != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_x);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_x = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_multiplyResult != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_multiplyResult = nullptr;
							 | 
						|
									}
							 | 
						|
								#ifdef DEBUG
							 | 
						|
									std::cout << "(DLL) Finished cleanup." << std::endl;
							 | 
						|
								#endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename ValueType>
							 | 
						|
								void basicValueIteration_addVectorsInplace(std::vector<ValueType>& a, std::vector<ValueType> const& b) {
							 | 
						|
									ValueType* device_a = nullptr;
							 | 
						|
									ValueType* device_b = nullptr;
							 | 
						|
								
							 | 
						|
									const size_t vectorSize = std::max(a.size(), b.size());
							 | 
						|
								
							 | 
						|
									cudaError_t cudaMallocResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_a), sizeof(ValueType) * vectorSize);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector a, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * vectorSize);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Memory allocated, copy data to device
							 | 
						|
									cudaError_t cudaCopyResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_a, a.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector a, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
									do {
							 | 
						|
										// Transform: Add multiplyResult + b inplace to multiplyResult
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_a(device_a);
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
							 | 
						|
										thrust::transform(devicePtrThrust_a, devicePtrThrust_a + vectorSize, devicePtrThrust_b, devicePtrThrust_a, thrust::plus<ValueType>());
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									} while (false);
							 | 
						|
								
							 | 
						|
									// Get result back from the device
							 | 
						|
									cudaCopyResult = cudaMemcpy(a.data(), device_a, sizeof(ValueType) * vectorSize, cudaMemcpyDeviceToHost);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// All code related to freeing memory and clearing up the device
							 | 
						|
								cleanup:
							 | 
						|
									if (device_a != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_a);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector a, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_a = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_b != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_b);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_b = nullptr;
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename IndexType, typename ValueType, bool Minimize>
							 | 
						|
								void basicValueIteration_reduceGroupedVector(std::vector<ValueType> const& groupedVector, std::vector<IndexType> const& grouping, std::vector<ValueType>& targetVector) {
							 | 
						|
									ValueType* device_groupedVector = nullptr;
							 | 
						|
									IndexType* device_grouping = nullptr;
							 | 
						|
									ValueType* device_target = nullptr;
							 | 
						|
								
							 | 
						|
									const size_t groupedSize = groupedVector.size();
							 | 
						|
									const size_t groupingSize = grouping.size();
							 | 
						|
									const size_t targetSize = targetVector.size();
							 | 
						|
								
							 | 
						|
									cudaError_t cudaMallocResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_groupedVector), sizeof(ValueType) * groupedSize);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector groupedVector, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_grouping), sizeof(IndexType) * groupingSize);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector grouping, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_target), sizeof(ValueType) * targetSize);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector targetVector, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Memory allocated, copy data to device
							 | 
						|
									cudaError_t cudaCopyResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_groupedVector, groupedVector.data(), sizeof(ValueType) * groupedSize, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector groupedVector, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_grouping, grouping.data(), sizeof(IndexType) * groupingSize, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector grouping, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
									do {
							 | 
						|
										// Reduce: Reduce multiplyResult to a new x vector
							 | 
						|
										cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(groupingSize - 1, groupedSize, device_grouping, device_target, device_groupedVector);
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									} while (false);
							 | 
						|
								
							 | 
						|
									// Get result back from the device
							 | 
						|
									cudaCopyResult = cudaMemcpy(targetVector.data(), device_target, sizeof(ValueType) * targetSize, cudaMemcpyDeviceToHost);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// All code related to freeing memory and clearing up the device
							 | 
						|
								cleanup:
							 | 
						|
									if (device_groupedVector != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_groupedVector);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector groupedVector, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_groupedVector = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_grouping != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_grouping);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector grouping, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_grouping = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_target != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_target);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector target, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_target = nullptr;
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename ValueType, bool Relative>
							 | 
						|
								void basicValueIteration_equalModuloPrecision(std::vector<ValueType> const& x, std::vector<ValueType> const& y, ValueType& maxElement) {
							 | 
						|
									ValueType* device_x = nullptr;
							 | 
						|
									ValueType* device_y = nullptr;
							 | 
						|
								
							 | 
						|
									const size_t vectorSize = x.size();
							 | 
						|
								
							 | 
						|
									cudaError_t cudaMallocResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * vectorSize);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_y), sizeof(ValueType) * vectorSize);
							 | 
						|
									if (cudaMallocResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not allocate memory for Vector y, Error Code " << cudaMallocResult << "." << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Memory allocated, copy data to device
							 | 
						|
									cudaError_t cudaCopyResult;
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									cudaCopyResult = cudaMemcpy(device_y, y.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
							 | 
						|
									if (cudaCopyResult != cudaSuccess) {
							 | 
						|
										std::cout << "Could not copy data for Vector y, Error Code " << cudaCopyResult << std::endl;
							 | 
						|
										goto cleanup;
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
									do {
							 | 
						|
										// Transform: x = abs(x - xSwap)/ xSwap
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
							 | 
						|
										thrust::device_ptr<ValueType> devicePtrThrust_y(device_y);
							 | 
						|
										thrust::transform(devicePtrThrust_x, devicePtrThrust_x + vectorSize, devicePtrThrust_y, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
								
							 | 
						|
										// Reduce: get Max over x and check for res < Precision
							 | 
						|
										maxElement = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x + vectorSize, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
							 | 
						|
										CUDA_CHECK_ALL_ERRORS();
							 | 
						|
									} while (false);
							 | 
						|
								
							 | 
						|
									// All code related to freeing memory and clearing up the device
							 | 
						|
								cleanup:
							 | 
						|
									if (device_x != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_x);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_x = nullptr;
							 | 
						|
									}
							 | 
						|
									if (device_y != nullptr) {
							 | 
						|
										cudaError_t cudaFreeResult = cudaFree(device_y);
							 | 
						|
										if (cudaFreeResult != cudaSuccess) {
							 | 
						|
											std::cout << "Could not free Memory of Vector y, Error Code " << cudaFreeResult << "." << std::endl;
							 | 
						|
										}
							 | 
						|
										device_y = nullptr;
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								/*
							 | 
						|
								 * Declare and implement all exported functions for these Kernels here
							 | 
						|
								 *
							 | 
						|
								 */
							 | 
						|
								
							 | 
						|
								void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b) {
							 | 
						|
									basicValueIteration_spmv<uint_fast64_t, double>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b) {
							 | 
						|
									basicValueIteration_addVectorsInplace<double>(a, b);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
							 | 
						|
									basicValueIteration_reduceGroupedVector<uint_fast64_t, double, true>(groupedVector, grouping, targetVector);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
							 | 
						|
									basicValueIteration_reduceGroupedVector<uint_fast64_t, double, false>(groupedVector, grouping, targetVector);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
							 | 
						|
									basicValueIteration_equalModuloPrecision<double, true>(x, y, maxElement);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
							 | 
						|
									basicValueIteration_equalModuloPrecision<double, false>(x, y, maxElement);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Float
							 | 
						|
								void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b) {
							 | 
						|
									basicValueIteration_spmv<uint_fast64_t, float>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b) {
							 | 
						|
									basicValueIteration_addVectorsInplace<float>(a, b);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
							 | 
						|
									basicValueIteration_reduceGroupedVector<uint_fast64_t, float, true>(groupedVector, grouping, targetVector);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
							 | 
						|
									basicValueIteration_reduceGroupedVector<uint_fast64_t, float, false>(groupedVector, grouping, targetVector);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
							 | 
						|
									basicValueIteration_equalModuloPrecision<float, true>(x, y, maxElement);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
							 | 
						|
									basicValueIteration_equalModuloPrecision<float, false>(x, y, maxElement);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
							 | 
						|
									if (relativePrecisionCheck) {
							 | 
						|
										return basicValueIteration_mvReduce<true, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									} else {
							 | 
						|
										return basicValueIteration_mvReduce<true, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
							 | 
						|
									if (relativePrecisionCheck) {
							 | 
						|
										return basicValueIteration_mvReduce<false, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									} else {
							 | 
						|
										return basicValueIteration_mvReduce<false, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
							 | 
						|
									if (relativePrecisionCheck) {
							 | 
						|
										return basicValueIteration_mvReduce<true, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									} else {
							 | 
						|
										return basicValueIteration_mvReduce<true, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
							 | 
						|
									if (relativePrecisionCheck) {
							 | 
						|
										return basicValueIteration_mvReduce<false, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									} else {
							 | 
						|
										return basicValueIteration_mvReduce<false, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
							 | 
						|
									size_t const valueTypeSize = sizeof(double);
							 | 
						|
									size_t const indexTypeSize = sizeof(uint_fast64_t);
							 | 
						|
								
							 | 
						|
									/*
							 | 
						|
									IndexType* device_matrixRowIndices = nullptr;
							 | 
						|
									IndexType* device_matrixColIndices = nullptr;
							 | 
						|
									ValueType* device_matrixValues = nullptr;
							 | 
						|
									ValueType* device_x = nullptr;
							 | 
						|
									ValueType* device_xSwap = nullptr;
							 | 
						|
									ValueType* device_b = nullptr;
							 | 
						|
									ValueType* device_multiplyResult = nullptr;
							 | 
						|
									IndexType* device_nondeterministicChoiceIndices = nullptr;
							 | 
						|
									*/
							 | 
						|
								
							 | 
						|
									// Row Indices, Column Indices, Values, Choice Indices
							 | 
						|
									size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
							 | 
						|
									// Vectors x, xSwap, b, multiplyResult
							 | 
						|
									size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
							 | 
						|
								
							 | 
						|
									return (matrixDataSize + vectorSizes);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
							 | 
						|
									size_t const valueTypeSize = sizeof(float);
							 | 
						|
									size_t const indexTypeSize = sizeof(uint_fast64_t);
							 | 
						|
								
							 | 
						|
									/*
							 | 
						|
									IndexType* device_matrixRowIndices = nullptr;
							 | 
						|
									IndexType* device_matrixColIndices = nullptr;
							 | 
						|
									ValueType* device_matrixValues = nullptr;
							 | 
						|
									ValueType* device_x = nullptr;
							 | 
						|
									ValueType* device_xSwap = nullptr;
							 | 
						|
									ValueType* device_b = nullptr;
							 | 
						|
									ValueType* device_multiplyResult = nullptr;
							 | 
						|
									IndexType* device_nondeterministicChoiceIndices = nullptr;
							 | 
						|
									*/
							 | 
						|
								
							 | 
						|
									// Row Indices, Column Indices, Values, Choice Indices
							 | 
						|
									size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
							 | 
						|
									// Vectors x, xSwap, b, multiplyResult
							 | 
						|
									size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
							 | 
						|
								
							 | 
						|
									return (matrixDataSize + vectorSizes);
							 | 
						|
								}
							 |