You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

348 lines
20 KiB

#include "test/storm_gtest.h"
#include "storm-config.h"
#include "storm/api/builder.h"
#include "storm-parsers/api/model_descriptions.h"
#include "storm/api/properties.h"
#include "storm-parsers/api/properties.h"
#include "storm/models/sparse/Smg.h"
#include "storm/modelchecker/rpatl/SparseSmgRpatlModelChecker.h"
#include "storm/modelchecker/results/QuantitativeCheckResult.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/modelchecker/results/QualitativeCheckResult.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/environment/solver/TopologicalSolverEnvironment.h"
#include "storm/environment/solver/MultiplierEnvironment.h"
#include "storm/settings/modules/CoreSettings.h"
#include "storm/logic/Formulas.h"
#include "storm/exceptions/UncheckedRequirementException.h"
namespace {
enum class SmgEngine {PrismSparse};
class SparseDoubleValueIterationGmmxxGaussSeidelMultEnvironment {
public:
static const SmgEngine engine = SmgEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Smg<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::GaussSeidel);
env.solver().multiplier().setType(storm::solver::MultiplierType::Gmmxx);
return env;
}
};
class SparseDoubleValueIterationGmmxxRegularMultEnvironment {
public:
static const SmgEngine engine = SmgEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Smg<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::Regular);
env.solver().multiplier().setType(storm::solver::MultiplierType::Gmmxx);
return env;
}
};
class SparseDoubleValueIterationNativeGaussSeidelMultEnvironment {
public:
static const SmgEngine engine = SmgEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Smg<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::GaussSeidel);
env.solver().multiplier().setType(storm::solver::MultiplierType::Native);
return env;
}
};
class SparseDoubleValueIterationNativeRegularMultEnvironment {
public:
static const SmgEngine engine = SmgEngine::PrismSparse;
static const bool isExact = false;
typedef double ValueType;
typedef storm::models::sparse::Smg<ValueType> ModelType;
static storm::Environment createEnvironment() {
storm::Environment env;
env.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration);
env.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(1e-10));
env.solver().minMax().setMultiplicationStyle(storm::solver::MultiplicationStyle::Regular);
env.solver().multiplier().setType(storm::solver::MultiplierType::Native);
return env;
}
};
template<typename TestType>
class SmgRpatlModelCheckerTest : public ::testing::Test {
public:
typedef typename TestType::ValueType ValueType;
typedef typename storm::models::sparse::Smg<ValueType> SparseModelType;
SmgRpatlModelCheckerTest() : _environment(TestType::createEnvironment()) {}
storm::Environment const& env() const { return _environment; }
ValueType parseNumber(std::string const& input) const { return storm::utility::convertNumber<ValueType>(input);}
ValueType precision() const { return TestType::isExact ? parseNumber("0") : parseNumber("1e-6");}
bool isSparseModel() const { return std::is_same<typename TestType::ModelType, SparseModelType>::value; }
template <typename MT = typename TestType::ModelType>
typename std::enable_if<std::is_same<MT, SparseModelType>::value, std::pair<std::shared_ptr<MT>, std::vector<std::shared_ptr<storm::logic::Formula const>>>>::type
buildModelFormulas(std::string const& pathToPrismFile, std::string const& formulasAsString, std::string const& constantDefinitionString = "") const {
std::pair<std::shared_ptr<MT>, std::vector<std::shared_ptr<storm::logic::Formula const>>> result;
storm::prism::Program program = storm::api::parseProgram(pathToPrismFile);
program = storm::utility::prism::preprocess(program, constantDefinitionString);
if (TestType::engine == SmgEngine::PrismSparse) {
result.second = storm::api::extractFormulasFromProperties(storm::api::parsePropertiesForPrismProgram(formulasAsString, program));
result.first = storm::api::buildSparseModel<ValueType>(program, result.second)->template as<MT>();
}
return result;
}
std::vector<storm::modelchecker::CheckTask<storm::logic::Formula, ValueType>> getTasks(std::vector<std::shared_ptr<storm::logic::Formula const>> const& formulas) const {
std::vector<storm::modelchecker::CheckTask<storm::logic::Formula, ValueType>> result;
for (auto const& f : formulas) {
result.emplace_back(*f);
}
return result;
}
template <typename MT = typename TestType::ModelType>
typename std::enable_if<std::is_same<MT, SparseModelType>::value, std::shared_ptr<storm::modelchecker::AbstractModelChecker<MT>>>::type
createModelChecker(std::shared_ptr<MT> const& model) const {
if (TestType::engine == SmgEngine::PrismSparse) {
return std::make_shared<storm::modelchecker::SparseSmgRpatlModelChecker<SparseModelType>>(*model);
} else {
STORM_LOG_ERROR("TestType::engine must be PrismSparse!");
return nullptr;
}
}
ValueType getQuantitativeResultAtInitialState(std::shared_ptr<storm::models::Model<ValueType>> const& model, std::unique_ptr<storm::modelchecker::CheckResult>& result) {
auto filter = getInitialStateFilter(model);
result->filter(*filter);
return result->asQuantitativeCheckResult<ValueType>().getMin();
}
private:
storm::Environment _environment;
std::unique_ptr<storm::modelchecker::QualitativeCheckResult> getInitialStateFilter(std::shared_ptr<storm::models::Model<ValueType>> const& model) const {
if (isSparseModel()) {
return std::make_unique<storm::modelchecker::ExplicitQualitativeCheckResult>(model->template as<SparseModelType>()->getInitialStates());
} else {
STORM_LOG_ERROR("Smg Rpatl Model must be a Sparse Model!");
return nullptr;
}
}
};
typedef ::testing::Types<
SparseDoubleValueIterationGmmxxGaussSeidelMultEnvironment,
SparseDoubleValueIterationGmmxxRegularMultEnvironment,
SparseDoubleValueIterationNativeGaussSeidelMultEnvironment,
SparseDoubleValueIterationNativeRegularMultEnvironment
> TestingTypes;
TYPED_TEST_SUITE(SmgRpatlModelCheckerTest, TestingTypes,);
TYPED_TEST(SmgRpatlModelCheckerTest, Walker) {
// NEXT tests
std::string formulasString = "<<walker>> Pmax=? [X \"s2\"]";
formulasString += "; <<walker>> Pmin=? [X \"s2\"]";
formulasString += "; <<walker>> Pmax=? [X !\"s1\"]";
formulasString += "; <<walker>> Pmin=? [X !\"s1\"]";
// UNTIL tests
formulasString += "; <<walker>> Pmax=? [ a=0 U a=1 ]";
formulasString += "; <<walker>> Pmin=? [ a=0 U a=1 ]";
formulasString += "; <<walker>> Pmax=? [ b=0 U b=1 ]";
formulasString += "; <<walker>> Pmin=? [ b=0 U b=1 ]";
// GLOBALLY tests
formulasString += "; <<walker>> Pmax=? [G !\"s3\"]";
formulasString += "; <<walker>> Pmin=? [G !\"s3\"]";
formulasString += "; <<walker>> Pmax=? [G a=0 ]";
formulasString += "; <<walker>> Pmin=? [G a=0 ]";
// EVENTUALLY tests
formulasString += "; <<walker>> Pmax=? [F \"s3\"]";
formulasString += "; <<walker>> Pmin=? [F \"s3\"]";
formulasString += "; <<walker>> Pmax=? [F [3,4] \"s4\"]";
formulasString += "; <<walker>> Pmax=? [F [3,5] \"s4\"]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/smg/walker.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(5ul, model->getNumberOfStates());
EXPECT_EQ(12ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Smg);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
// NEXT results
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("0.6"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[1]);
EXPECT_NEAR(this->parseNumber("0"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[2]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[3]);
EXPECT_NEAR(this->parseNumber("0.6"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
// UNTIL results
result = checker->check(this->env(), tasks[4]);
EXPECT_NEAR(this->parseNumber("0.52"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[5]);
EXPECT_NEAR(this->parseNumber("0"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[6]);
EXPECT_NEAR(this->parseNumber("0.9999996417"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[7]);
EXPECT_NEAR(this->parseNumber("0"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
// GLOBALLY tests
result = checker->check(this->env(), tasks[8]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[9]);
EXPECT_NEAR(this->parseNumber("0.65454565"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[10]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[11]);
EXPECT_NEAR(this->parseNumber("0.48"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
// EVENTUALLY tests
result = checker->check(this->env(), tasks[12]);
EXPECT_NEAR(this->parseNumber("0.34545435"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[13]);
EXPECT_NEAR(this->parseNumber("0"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[14]);
EXPECT_NEAR(this->parseNumber("0.576"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[15]);
EXPECT_NEAR(this->parseNumber("0.6336"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
}
TYPED_TEST(SmgRpatlModelCheckerTest, MessageHack) {
// This test is for borders of bounded U with conversations from G and F
// bounded G
std::string formulasString = "<<bob, alice>> Pmax=? [ G !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=1 !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=2 !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=10 !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=17 !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=32 !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=47 !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=61 !\"hacked\" ]";
formulasString += "; <<bob, alice>> Pmax=? [ G <=62 !\"hacked\" ]";
// bounded F
formulasString += "; <<bob, alice>> Pmin=? [ F \"hacked\" ]";
formulasString += "; <<bob, alice>> Pmin=? [ F [1,2] \"hacked\" ]";
formulasString += "; <<bob, alice>> Pmin=? [ F [3,16] \"hacked\" ]";
formulasString += "; <<bob, alice>> Pmin=? [ F [0,17] \"hacked\" ]";
formulasString += "; <<bob, alice>> Pmin=? [ F [17,31] \"hacked\" ]";
formulasString += "; <<bob, alice>> Pmin=? [ F [17,32] \"hacked\" ]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/smg/messageHack.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(30ul, model->getNumberOfStates());
EXPECT_EQ(31ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Smg);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
// bounded G results
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("1.99379598e-05"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[1]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[2]);
EXPECT_NEAR(this->parseNumber("0.95"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[3]);
EXPECT_NEAR(this->parseNumber("0.95"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[4]);
EXPECT_NEAR(this->parseNumber("0.9025"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[5]);
EXPECT_NEAR(this->parseNumber("0.857375"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[6]);
EXPECT_NEAR(this->parseNumber("0.81450625"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[7]);
EXPECT_NEAR(this->parseNumber("0.81450625"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[8]);
EXPECT_NEAR(this->parseNumber("0.7737809375"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
// bounded F results
result = checker->check(this->env(), tasks[9]);
EXPECT_NEAR(this->parseNumber("0.999980062"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[10]);
EXPECT_NEAR(this->parseNumber("0.05"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[11]);
EXPECT_NEAR(this->parseNumber("0.05"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[12]);
EXPECT_NEAR(this->parseNumber("0.0975"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[13]);
EXPECT_NEAR(this->parseNumber("0.0975"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[14]);
EXPECT_NEAR(this->parseNumber("0.142625"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
}
TYPED_TEST(SmgRpatlModelCheckerTest, RightDecision) {
// This test is for making decisions and creating shields
// testing probabilities for decisions
std::string formulasString = "<<hiker>> Pmax=? [ F <=3 \"target\" ]";
formulasString += "; <<hiker>> Pmax=? [ F <=5 \"target\" ]";
formulasString += "; <<hiker, native>> Pmax=? [ F <=3 \"target\" ]";
formulasString += "; <<hiker>> Pmin=? [ F \"target\" ]";
// testing create shielding expressions
formulasString += "; <preSafetyShieldLambda1, PreSafety, lambda=0.9> <<hiker>> Pmax=? [ F <=3 \"target\" ]";
formulasString += "; <postSafetyShieldGamma1, PostSafety, gamma=0.9> <<hiker>> Pmax=? [ F <=3 \"target\" ]";
formulasString += "; <preSafetyShieldLambda2, PreSafety, lambda=0.5> <<hiker>> Pmax=? [ F <=5 \"target\" ]";
formulasString += "; <postSafetyShieldGamma2, PostSafety, gamma=0.5> <<hiker>> Pmax=? [ F <=5 \"target\" ]";
formulasString += "; <preSafetyShieldLambda3, PreSafety, lambda=0> <<hiker, native>> Pmax=? [ F <=3 \"target\" ]";
formulasString += "; <postSafetyShieldGamma3, PostSafety, gamma=0> <<hiker, native>> Pmax=? [ F <=3 \"target\" ]";
formulasString += "; <preSafetyShieldLambda4, PreSafety, lambda=0.9> <<hiker>> Pmin=? [ F \"target\" ]";
formulasString += "; <postSafetyShieldGamma4, PostSafety, gamma=0.9> <<hiker>> Pmin=? [ F \"target\" ]";
auto modelFormulas = this->buildModelFormulas(STORM_TEST_RESOURCES_DIR "/smg/rightDecision.nm", formulasString);
auto model = std::move(modelFormulas.first);
auto tasks = this->getTasks(modelFormulas.second);
EXPECT_EQ(11ul, model->getNumberOfStates());
EXPECT_EQ(15ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Smg);
auto checker = this->createModelChecker(model);
std::unique_ptr<storm::modelchecker::CheckResult> result;
// probability results
result = checker->check(this->env(), tasks[0]);
EXPECT_NEAR(this->parseNumber("0.9"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[1]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[2]);
EXPECT_NEAR(this->parseNumber("1"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
result = checker->check(this->env(), tasks[3]);
EXPECT_NEAR(this->parseNumber("0"), this->getQuantitativeResultAtInitialState(model, result), this->precision());
// shielding results
result = checker->check(this->env(), tasks[4]);
result = checker->check(this->env(), tasks[5]);
result = checker->check(this->env(), tasks[6]);
result = checker->check(this->env(), tasks[7]);
result = checker->check(this->env(), tasks[8]);
result = checker->check(this->env(), tasks[9]);
result = checker->check(this->env(), tasks[10]);
result = checker->check(this->env(), tasks[11]);
//TODO: check the shields
}
// TODO: create more test cases (files)
}