You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							509 lines
						
					
					
						
							17 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							509 lines
						
					
					
						
							17 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | |
| // Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "sparse.h" | |
|  | |
| template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) | |
| { | |
|   typedef typename SparseMatrixType::Index Index; | |
|   typedef Matrix<Index,2,1> Vector2; | |
|    | |
|   const Index rows = ref.rows(); | |
|   const Index cols = ref.cols(); | |
|   typedef typename SparseMatrixType::Scalar Scalar; | |
|   enum { Flags = SparseMatrixType::Flags }; | |
| 
 | |
|   double density = (std::max)(8./(rows*cols), 0.01); | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   Scalar eps = 1e-6; | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(); | |
|   { | |
|     SparseMatrixType m(rows, cols); | |
|     DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | |
|     DenseVector vec1 = DenseVector::Random(rows); | |
| 
 | |
|     std::vector<Vector2> zeroCoords; | |
|     std::vector<Vector2> nonzeroCoords; | |
|     initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); | |
| 
 | |
|     if (zeroCoords.size()==0 || nonzeroCoords.size()==0) | |
|       return; | |
| 
 | |
|     // test coeff and coeffRef | |
|     for (int i=0; i<(int)zeroCoords.size(); ++i) | |
|     { | |
|       VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); | |
|       if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) | |
|         VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); | |
|     } | |
|     VERIFY_IS_APPROX(m, refMat); | |
| 
 | |
|     m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
|     refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
| 
 | |
|     VERIFY_IS_APPROX(m, refMat); | |
|       /* | |
|       // test InnerIterators and Block expressions | |
|       for (int t=0; t<10; ++t) | |
|       { | |
|         int j = internal::random<int>(0,cols-1); | |
|         int i = internal::random<int>(0,rows-1); | |
|         int w = internal::random<int>(1,cols-j-1); | |
|         int h = internal::random<int>(1,rows-i-1); | |
|  | |
|     //     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); | |
|         for(int c=0; c<w; c++) | |
|         { | |
|           VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); | |
|           for(int r=0; r<h; r++) | |
|           { | |
|     //         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); | |
|           } | |
|         } | |
|     //     for(int r=0; r<h; r++) | |
|     //     { | |
|     //       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); | |
|     //       for(int c=0; c<w; c++) | |
|     //       { | |
|     //         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); | |
|     //       } | |
|     //     } | |
|       } | |
|  | |
|       for(int c=0; c<cols; c++) | |
|       { | |
|         VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); | |
|         VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); | |
|       } | |
|  | |
|       for(int r=0; r<rows; r++) | |
|       { | |
|         VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); | |
|         VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); | |
|       } | |
|       */ | |
|        | |
|       // test assertion | |
|       VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); | |
|       VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); | |
|     } | |
| 
 | |
|     // test insert (inner random) | |
|     { | |
|       DenseMatrix m1(rows,cols); | |
|       m1.setZero(); | |
|       SparseMatrixType m2(rows,cols); | |
|       if(internal::random<int>()%2) | |
|         m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); | |
|       for (Index j=0; j<cols; ++j) | |
|       { | |
|         for (Index k=0; k<rows/2; ++k) | |
|         { | |
|           Index i = internal::random<Index>(0,rows-1); | |
|           if (m1.coeff(i,j)==Scalar(0)) | |
|             m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | |
|         } | |
|       } | |
|       m2.finalize(); | |
|       VERIFY_IS_APPROX(m2,m1); | |
|     } | |
| 
 | |
|     // test insert (fully random) | |
|     { | |
|       DenseMatrix m1(rows,cols); | |
|       m1.setZero(); | |
|       SparseMatrixType m2(rows,cols); | |
|       if(internal::random<int>()%2) | |
|         m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); | |
|       for (int k=0; k<rows*cols; ++k) | |
|       { | |
|         Index i = internal::random<Index>(0,rows-1); | |
|         Index j = internal::random<Index>(0,cols-1); | |
|         if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) | |
|           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | |
|         else | |
|         { | |
|           Scalar v = internal::random<Scalar>(); | |
|           m2.coeffRef(i,j) += v; | |
|           m1(i,j) += v; | |
|         } | |
|       } | |
|       VERIFY_IS_APPROX(m2,m1); | |
|     } | |
|      | |
|     // test insert (un-compressed) | |
|     for(int mode=0;mode<4;++mode) | |
|     { | |
|       DenseMatrix m1(rows,cols); | |
|       m1.setZero(); | |
|       SparseMatrixType m2(rows,cols); | |
|       VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8))); | |
|       m2.reserve(r); | |
|       for (int k=0; k<rows*cols; ++k) | |
|       { | |
|         Index i = internal::random<Index>(0,rows-1); | |
|         Index j = internal::random<Index>(0,cols-1); | |
|         if (m1.coeff(i,j)==Scalar(0)) | |
|           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | |
|         if(mode==3) | |
|           m2.reserve(r); | |
|       } | |
|       if(internal::random<int>()%2) | |
|         m2.makeCompressed(); | |
|       VERIFY_IS_APPROX(m2,m1); | |
|     } | |
| 
 | |
|   // test innerVector() | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     Index j0 = internal::random<Index>(0,rows-1); | |
|     Index j1 = internal::random<Index>(0,rows-1); | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0)); | |
|     else | |
|       VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); | |
| 
 | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1)); | |
|     else | |
|       VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); | |
| 
 | |
|     SparseMatrixType m3(rows,rows); | |
|     m3.reserve(VectorXi::Constant(rows,rows/2)); | |
|     for(Index j=0; j<rows; ++j) | |
|       for(Index k=0; k<j; ++k) | |
|         m3.insertByOuterInner(j,k) = k+1; | |
|     for(Index j=0; j<rows; ++j) | |
|     { | |
|       VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); | |
|       if(j>0) | |
|         VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); | |
|     } | |
|     m3.makeCompressed(); | |
|     for(Index j=0; j<rows; ++j) | |
|     { | |
|       VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); | |
|       if(j>0) | |
|         VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); | |
|     } | |
| 
 | |
|     //m2.innerVector(j0) = 2*m2.innerVector(j1); | |
|     //refMat2.col(j0) = 2*refMat2.col(j1); | |
|     //VERIFY_IS_APPROX(m2, refMat2); | |
|   } | |
| 
 | |
|   // test innerVectors() | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     if(internal::random<float>(0,1)>0.5) m2.makeCompressed(); | |
|      | |
|     Index j0 = internal::random<Index>(0,rows-2); | |
|     Index j1 = internal::random<Index>(0,rows-2); | |
|     Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); | |
|     else | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), | |
|                        refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); | |
|     else | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), | |
|                       refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); | |
|      | |
|     VERIFY_IS_APPROX(m2, refMat2); | |
|      | |
|     m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); | |
|     if(SparseMatrixType::IsRowMajor) | |
|       refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); | |
|     else | |
|       refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); | |
|      | |
|     VERIFY_IS_APPROX(m2, refMat2); | |
|      | |
|   } | |
|    | |
|   // test basic computations | |
|   { | |
|     DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m1(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     SparseMatrixType m3(rows, rows); | |
|     SparseMatrixType m4(rows, rows); | |
|     initSparse<Scalar>(density, refM1, m1); | |
|     initSparse<Scalar>(density, refM2, m2); | |
|     initSparse<Scalar>(density, refM3, m3); | |
|     initSparse<Scalar>(density, refM4, m4); | |
| 
 | |
|     VERIFY_IS_APPROX(m1+m2, refM1+refM2); | |
|     VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); | |
|     VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); | |
|     VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); | |
| 
 | |
|     VERIFY_IS_APPROX(m1*=s1, refM1*=s1); | |
|     VERIFY_IS_APPROX(m1/=s1, refM1/=s1); | |
| 
 | |
|     VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); | |
|     VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); | |
| 
 | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); | |
|     else | |
|       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); | |
| 
 | |
|     VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); | |
|     VERIFY_IS_APPROX(m1.real(), refM1.real()); | |
| 
 | |
|     refM4.setRandom(); | |
|     // sparse cwise* dense | |
|     VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); | |
| //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); | |
|  | |
|     // test aliasing | |
|     VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); | |
|     VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); | |
|     VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); | |
|     VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); | |
|   } | |
| 
 | |
|   // test transpose | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); | |
|     VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); | |
| 
 | |
|     VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); | |
|   } | |
| 
 | |
|    | |
|    | |
|   // test generic blocks | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     Index j0 = internal::random<Index>(0,rows-2); | |
|     Index j1 = internal::random<Index>(0,rows-2); | |
|     Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); | |
|     else | |
|       VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); | |
|      | |
|     if(SparseMatrixType::IsRowMajor) | |
|       VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), | |
|                       refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); | |
|     else | |
|       VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), | |
|                       refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); | |
|        | |
|     Index i = internal::random<Index>(0,m2.outerSize()-1); | |
|     if(SparseMatrixType::IsRowMajor) { | |
|       m2.innerVector(i) = m2.innerVector(i) * s1; | |
|       refMat2.row(i) = refMat2.row(i) * s1; | |
|       VERIFY_IS_APPROX(m2,refMat2); | |
|     } else { | |
|       m2.innerVector(i) = m2.innerVector(i) * s1; | |
|       refMat2.col(i) = refMat2.col(i) * s1; | |
|       VERIFY_IS_APPROX(m2,refMat2); | |
|     } | |
|   } | |
| 
 | |
|   // test prune | |
|   { | |
|     SparseMatrixType m2(rows, rows); | |
|     DenseMatrix refM2(rows, rows); | |
|     refM2.setZero(); | |
|     int countFalseNonZero = 0; | |
|     int countTrueNonZero = 0; | |
|     for (Index j=0; j<m2.outerSize(); ++j) | |
|     { | |
|       m2.startVec(j); | |
|       for (Index i=0; i<m2.innerSize(); ++i) | |
|       { | |
|         float x = internal::random<float>(0,1); | |
|         if (x<0.1) | |
|         { | |
|           // do nothing | |
|         } | |
|         else if (x<0.5) | |
|         { | |
|           countFalseNonZero++; | |
|           m2.insertBackByOuterInner(j,i) = Scalar(0); | |
|         } | |
|         else | |
|         { | |
|           countTrueNonZero++; | |
|           m2.insertBackByOuterInner(j,i) = Scalar(1); | |
|           if(SparseMatrixType::IsRowMajor) | |
|             refM2(j,i) = Scalar(1); | |
|           else | |
|             refM2(i,j) = Scalar(1); | |
|         } | |
|       } | |
|     } | |
|     m2.finalize(); | |
|     VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); | |
|     VERIFY_IS_APPROX(m2, refM2); | |
|     m2.prune(Scalar(1)); | |
|     VERIFY(countTrueNonZero==m2.nonZeros()); | |
|     VERIFY_IS_APPROX(m2, refM2); | |
|   } | |
| 
 | |
|   // test setFromTriplets | |
|   { | |
|     typedef Triplet<Scalar,Index> TripletType; | |
|     std::vector<TripletType> triplets; | |
|     int ntriplets = rows*cols; | |
|     triplets.reserve(ntriplets); | |
|     DenseMatrix refMat(rows,cols); | |
|     refMat.setZero(); | |
|     for(int i=0;i<ntriplets;++i) | |
|     { | |
|       Index r = internal::random<Index>(0,rows-1); | |
|       Index c = internal::random<Index>(0,cols-1); | |
|       Scalar v = internal::random<Scalar>(); | |
|       triplets.push_back(TripletType(r,c,v)); | |
|       refMat(r,c) += v; | |
|     } | |
|     SparseMatrixType m(rows,cols); | |
|     m.setFromTriplets(triplets.begin(), triplets.end()); | |
|     VERIFY_IS_APPROX(m, refMat); | |
|   } | |
| 
 | |
|   // test triangularView | |
|   { | |
|     DenseMatrix refMat2(rows, rows), refMat3(rows, rows); | |
|     SparseMatrixType m2(rows, rows), m3(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     refMat3 = refMat2.template triangularView<Lower>(); | |
|     m3 = m2.template triangularView<Lower>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     refMat3 = refMat2.template triangularView<Upper>(); | |
|     m3 = m2.template triangularView<Upper>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     refMat3 = refMat2.template triangularView<UnitUpper>(); | |
|     m3 = m2.template triangularView<UnitUpper>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     refMat3 = refMat2.template triangularView<UnitLower>(); | |
|     m3 = m2.template triangularView<UnitLower>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     refMat3 = refMat2.template triangularView<StrictlyUpper>(); | |
|     m3 = m2.template triangularView<StrictlyUpper>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
| 
 | |
|     refMat3 = refMat2.template triangularView<StrictlyLower>(); | |
|     m3 = m2.template triangularView<StrictlyLower>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
|   } | |
|    | |
|   // test selfadjointView | |
|   if(!SparseMatrixType::IsRowMajor) | |
|   { | |
|     DenseMatrix refMat2(rows, rows), refMat3(rows, rows); | |
|     SparseMatrixType m2(rows, rows), m3(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     refMat3 = refMat2.template selfadjointView<Lower>(); | |
|     m3 = m2.template selfadjointView<Lower>(); | |
|     VERIFY_IS_APPROX(m3, refMat3); | |
|   } | |
|    | |
|   // test sparseView | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); | |
|   } | |
| 
 | |
|   // test diagonal | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); | |
|   } | |
|    | |
|   // test conservative resize | |
|   { | |
|       std::vector< std::pair<Index,Index> > inc; | |
|       inc.push_back(std::pair<Index,Index>(-3,-2)); | |
|       inc.push_back(std::pair<Index,Index>(0,0)); | |
|       inc.push_back(std::pair<Index,Index>(3,2)); | |
|       inc.push_back(std::pair<Index,Index>(3,0)); | |
|       inc.push_back(std::pair<Index,Index>(0,3)); | |
|        | |
|       for(size_t i = 0; i< inc.size(); i++) { | |
|         Index incRows = inc[i].first; | |
|         Index incCols = inc[i].second; | |
|         SparseMatrixType m1(rows, cols); | |
|         DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); | |
|         initSparse<Scalar>(density, refMat1, m1); | |
|          | |
|         m1.conservativeResize(rows+incRows, cols+incCols); | |
|         refMat1.conservativeResize(rows+incRows, cols+incCols); | |
|         if (incRows > 0) refMat1.bottomRows(incRows).setZero(); | |
|         if (incCols > 0) refMat1.rightCols(incCols).setZero(); | |
|          | |
|         VERIFY_IS_APPROX(m1, refMat1); | |
|          | |
|         // Insert new values | |
|         if (incRows > 0)  | |
|           m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; | |
|         if (incCols > 0)  | |
|           m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; | |
|            | |
|         VERIFY_IS_APPROX(m1, refMat1); | |
|            | |
|            | |
|       } | |
|   } | |
| 
 | |
|   // test Identity matrix | |
|   { | |
|     DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); | |
|     SparseMatrixType m1(rows, rows); | |
|     m1.setIdentity(); | |
|     VERIFY_IS_APPROX(m1, refMat1); | |
|   } | |
| } | |
| 
 | |
| void test_sparse_basic() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     int s = Eigen::internal::random<int>(1,50); | |
|     EIGEN_UNUSED_VARIABLE(s); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); | |
|     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) )); | |
|     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) )); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) )); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) )); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) )); | |
|      | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) )); | |
|     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) )); | |
|   } | |
| }
 |