You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							193 lines
						
					
					
						
							6.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							193 lines
						
					
					
						
							6.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <unsupported/Eigen/MatrixFunctions> | |
|  | |
| // Variant of VERIFY_IS_APPROX which uses absolute error instead of | |
| // relative error. | |
| #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) | |
|  | |
| template<typename Type1, typename Type2> | |
| inline bool test_isApprox_abs(const Type1& a, const Type2& b) | |
| { | |
|   return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); | |
| } | |
| 
 | |
| 
 | |
| // Returns a matrix with eigenvalues clustered around 0, 1 and 2. | |
| template<typename MatrixType> | |
| MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::RealScalar RealScalar; | |
|   MatrixType diag = MatrixType::Zero(size, size); | |
|   for (Index i = 0; i < size; ++i) { | |
|     diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2))) | |
|       + internal::random<Scalar>() * Scalar(RealScalar(0.01)); | |
|   } | |
|   MatrixType A = MatrixType::Random(size, size); | |
|   HouseholderQR<MatrixType> QRofA(A); | |
|   return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | |
| } | |
| 
 | |
| template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> | |
| struct randomMatrixWithImagEivals | |
| { | |
|   // Returns a matrix with eigenvalues clustered around 0 and +/- i. | |
|   static MatrixType run(const typename MatrixType::Index size); | |
| }; | |
| 
 | |
| // Partial specialization for real matrices | |
| template<typename MatrixType> | |
| struct randomMatrixWithImagEivals<MatrixType, 0> | |
| { | |
|   static MatrixType run(const typename MatrixType::Index size) | |
|   { | |
|     typedef typename MatrixType::Index Index; | |
|     typedef typename MatrixType::Scalar Scalar; | |
|     MatrixType diag = MatrixType::Zero(size, size); | |
|     Index i = 0; | |
|     while (i < size) { | |
|       Index randomInt = internal::random<Index>(-1, 1); | |
|       if (randomInt == 0 || i == size-1) { | |
|         diag(i, i) = internal::random<Scalar>() * Scalar(0.01); | |
|         ++i; | |
|       } else { | |
|         Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); | |
|         diag(i, i+1) = alpha; | |
|         diag(i+1, i) = -alpha; | |
|         i += 2; | |
|       } | |
|     } | |
|     MatrixType A = MatrixType::Random(size, size); | |
|     HouseholderQR<MatrixType> QRofA(A); | |
|     return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | |
|   } | |
| }; | |
| 
 | |
| // Partial specialization for complex matrices | |
| template<typename MatrixType> | |
| struct randomMatrixWithImagEivals<MatrixType, 1> | |
| { | |
|   static MatrixType run(const typename MatrixType::Index size) | |
|   { | |
|     typedef typename MatrixType::Index Index; | |
|     typedef typename MatrixType::Scalar Scalar; | |
|     typedef typename MatrixType::RealScalar RealScalar; | |
|     const Scalar imagUnit(0, 1); | |
|     MatrixType diag = MatrixType::Zero(size, size); | |
|     for (Index i = 0; i < size; ++i) { | |
|       diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit | |
|         + internal::random<Scalar>() * Scalar(RealScalar(0.01)); | |
|     } | |
|     MatrixType A = MatrixType::Random(size, size); | |
|     HouseholderQR<MatrixType> QRofA(A); | |
|     return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | |
|   } | |
| }; | |
| 
 | |
| 
 | |
| template<typename MatrixType> | |
| void testMatrixExponential(const MatrixType& A) | |
| { | |
|   typedef typename internal::traits<MatrixType>::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef std::complex<RealScalar> ComplexScalar; | |
| 
 | |
|   VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void testMatrixLogarithm(const MatrixType& A) | |
| { | |
|   typedef typename internal::traits<MatrixType>::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
| 
 | |
|   MatrixType scaledA; | |
|   RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); | |
|   if (maxImagPartOfSpectrum >= 0.9 * M_PI) | |
|     scaledA = A * 0.9 * M_PI / maxImagPartOfSpectrum; | |
|   else | |
|     scaledA = A; | |
| 
 | |
|   // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X | |
|   MatrixType expA = scaledA.exp(); | |
|   MatrixType logExpA = expA.log(); | |
|   VERIFY_IS_APPROX(logExpA, scaledA); | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void testHyperbolicFunctions(const MatrixType& A) | |
| { | |
|   // Need to use absolute error because of possible cancellation when | |
|   // adding/subtracting expA and expmA. | |
|   VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); | |
|   VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void testGonioFunctions(const MatrixType& A) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef std::complex<RealScalar> ComplexScalar; | |
|   typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime,  | |
|                  MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; | |
| 
 | |
|   ComplexScalar imagUnit(0,1); | |
|   ComplexScalar two(2,0); | |
| 
 | |
|   ComplexMatrix Ac = A.template cast<ComplexScalar>(); | |
|    | |
|   ComplexMatrix exp_iA = (imagUnit * Ac).exp(); | |
|   ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); | |
|    | |
|   ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); | |
|   VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); | |
|    | |
|   ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); | |
|   VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void testMatrix(const MatrixType& A) | |
| { | |
|   testMatrixExponential(A); | |
|   testMatrixLogarithm(A); | |
|   testHyperbolicFunctions(A); | |
|   testGonioFunctions(A); | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void testMatrixType(const MatrixType& m) | |
| { | |
|   // Matrices with clustered eigenvalue lead to different code paths | |
|   // in MatrixFunction.h and are thus useful for testing. | |
|   typedef typename MatrixType::Index Index; | |
| 
 | |
|   const Index size = m.rows(); | |
|   for (int i = 0; i < g_repeat; i++) { | |
|     testMatrix(MatrixType::Random(size, size).eval()); | |
|     testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); | |
|     testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); | |
|   } | |
| } | |
| 
 | |
| void test_matrix_function() | |
| { | |
|   CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); | |
|   CALL_SUBTEST_2(testMatrixType(Matrix3cf())); | |
|   CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); | |
|   CALL_SUBTEST_4(testMatrixType(Matrix2d())); | |
|   CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); | |
|   CALL_SUBTEST_6(testMatrixType(Matrix4cd())); | |
|   CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); | |
| }
 |