#include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h" #include "src/storage/dd/CuddOdd.h" #include "src/utility/macros.h" #include "src/utility/graph.h" #include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" #include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" #include "src/modelchecker/results/HybridQuantitativeCheckResult.h" #include "src/exceptions/InvalidStateException.h" #include "src/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { template HybridMdpPrctlModelChecker::HybridMdpPrctlModelChecker(storm::models::symbolic::Mdp const& model, std::unique_ptr>&& linearEquationSolverFactory) : SymbolicPropositionalModelChecker(model), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) { // Intentionally left empty. } template HybridMdpPrctlModelChecker::HybridMdpPrctlModelChecker(storm::models::symbolic::Mdp const& model) : SymbolicPropositionalModelChecker(model), linearEquationSolverFactory(new storm::utility::solver::MinMaxLinearEquationSolverFactory()) { // Intentionally left empty. } template bool HybridMdpPrctlModelChecker::canHandle(storm::logic::Formula const& formula) const { return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula(); } template std::unique_ptr HybridMdpPrctlModelChecker::computeUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel const& model, storm::dd::Add const& transitionMatrix, storm::dd::Bdd const& phiStates, storm::dd::Bdd const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& linearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. all states that have // probability 0 and 1 of satisfying the until-formula. std::pair, storm::dd::Bdd> statesWithProbability01; if (minimize) { statesWithProbability01 = storm::utility::graph::performProb01Min(model, phiStates, psiStates); } else { statesWithProbability01 = storm::utility::graph::performProb01Max(model, phiStates, psiStates); } storm::dd::Bdd maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates(); // Perform some logging. STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states."); STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states."); STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. return std::unique_ptr(new storm::modelchecker::SymbolicQuantitativeCheckResult(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5))); } else { // If there are maybe states, we need to solve an equation system. if (!maybeStates.isZero()) { // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd odd(maybeStates); // Create the matrix and the vector for the equation system. storm::dd::Add maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add submatrix = transitionMatrix * maybeStatesAdd; // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all // maybe states. storm::dd::Add prob1StatesAsColumn = statesWithProbability01.second.toAdd(); prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs()); storm::dd::Add subvector = submatrix * prob1StatesAsColumn; subvector = subvector.sumAbstract(model.getColumnVariables()); // Before cutting the non-maybe columns, we need to compute the sizes of the row groups. std::vector rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector(odd); // Finally cut away all columns targeting non-maybe states. submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); // Create the solution vector. std::vector x(maybeStates.getNonZeroCount(), ValueType(0.5)); // Translate the symbolic matrix/vector to their explicit representations and solve the equation system. std::pair, std::vector> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd); std::unique_ptr> solver = linearEquationSolverFactory.create(explicitRepresentation.first); solver->solveEquationSystem(minimize, x, explicitRepresentation.second); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr(new storm::modelchecker::HybridQuantitativeCheckResult(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x)); } else { return std::unique_ptr(new storm::modelchecker::SymbolicQuantitativeCheckResult(model.getReachableStates(), statesWithProbability01.second.toAdd())); } } } template std::unique_ptr HybridMdpPrctlModelChecker::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr rightResultPointer = this->check(pathFormula.getRightSubformula()); SymbolicQualitativeCheckResult const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult(); SymbolicQualitativeCheckResult const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult(); return this->computeUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory); } template std::unique_ptr HybridMdpPrctlModelChecker::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr subResultPointer = this->check(pathFormula.getSubformula()); SymbolicQualitativeCheckResult const& subResult = subResultPointer->asSymbolicQualitativeCheckResult(); return std::unique_ptr(new SymbolicQuantitativeCheckResult(this->getModel().getReachableStates(), this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector()))); } template storm::dd::Add HybridMdpPrctlModelChecker::computeNextProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel const& model, storm::dd::Add const& transitionMatrix, storm::dd::Bdd const& nextStates) { storm::dd::Add result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd(); return result.sumAbstract(model.getColumnVariables()); } template std::unique_ptr HybridMdpPrctlModelChecker::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(pathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); std::unique_ptr leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr rightResultPointer = this->check(pathFormula.getRightSubformula()); SymbolicQualitativeCheckResult const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult(); SymbolicQualitativeCheckResult const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult(); return this->computeBoundedUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); } template std::unique_ptr HybridMdpPrctlModelChecker::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel const& model, storm::dd::Add const& transitionMatrix, storm::dd::Bdd const& phiStates, storm::dd::Bdd const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory const& linearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. all states that have // probability 0 or 1 of satisfying the until-formula. storm::dd::Bdd statesWithProbabilityGreater0; if (minimize) { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(model, transitionMatrix.notZero(), phiStates, psiStates); } else { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(model, transitionMatrix.notZero(), phiStates, psiStates); } storm::dd::Bdd maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates(); // If there are maybe states, we need to perform matrix-vector multiplications. if (!maybeStates.isZero()) { // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd odd(maybeStates); // Create the matrix and the vector for the equation system. storm::dd::Add maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add submatrix = transitionMatrix * maybeStatesAdd; // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all // maybe states. storm::dd::Add prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs()); storm::dd::Add subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables()); // Before cutting the non-maybe columns, we need to compute the sizes of the row groups. std::vector rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector(odd); // Finally cut away all columns targeting non-maybe states. submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); // Create the solution vector. std::vector x(maybeStates.getNonZeroCount(), storm::utility::zero()); // Translate the symbolic matrix/vector to their explicit representations. std::pair, std::vector> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd); std::unique_ptr> solver = linearEquationSolverFactory.create(explicitRepresentation.first); solver->performMatrixVectorMultiplication(minimize, x, &explicitRepresentation.second, stepBound); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr(new storm::modelchecker::HybridQuantitativeCheckResult(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x)); } else { return std::unique_ptr(new storm::modelchecker::SymbolicQuantitativeCheckResult(model.getReachableStates(), psiStates.toAdd())); } } template std::unique_ptr HybridMdpPrctlModelChecker::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); return this->computeCumulativeRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); } template std::unique_ptr HybridMdpPrctlModelChecker::computeCumulativeRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel const& model, storm::dd::Add const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory const& linearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Compute the reward vector to add in each step based on the available reward models. storm::dd::Add totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero(); if (model.hasTransitionRewards()) { totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables()); } // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd odd(model.getReachableStates()); // Create the solution vector. std::vector x(model.getNumberOfStates(), storm::utility::zero()); // Translate the symbolic matrix/vector to their explicit representations. storm::storage::SparseMatrix explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd); std::vector b = totalRewardVector.template toVector(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices()); // Perform the matrix-vector multiplication. std::unique_ptr> solver = linearEquationSolverFactory.create(explicitMatrix); solver->performMatrixVectorMultiplication(minimize, x, &b, stepBound); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr(new HybridQuantitativeCheckResult(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x)); } template std::unique_ptr HybridMdpPrctlModelChecker::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); return this->computeInstantaneousRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); } template std::unique_ptr HybridMdpPrctlModelChecker::computeInstantaneousRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel const& model, storm::dd::Add const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory const& linearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd odd(model.getReachableStates()); // Translate the symbolic matrix to its explicit representations. storm::storage::SparseMatrix explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd); // Create the solution vector (and initialize it to the state rewards of the model). std::vector x = model.getStateRewardVector().template toVector(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices()); // Perform the matrix-vector multiplication. std::unique_ptr> solver = linearEquationSolverFactory.create(explicitMatrix); solver->performMatrixVectorMultiplication(minimize, x, nullptr, stepBound); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr(new HybridQuantitativeCheckResult(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x)); } template std::unique_ptr HybridMdpPrctlModelChecker::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr subResultPointer = this->check(rewardPathFormula.getSubformula()); SymbolicQualitativeCheckResult const& subResult = subResultPointer->asSymbolicQualitativeCheckResult(); return this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative); } template std::unique_ptr HybridMdpPrctlModelChecker::computeReachabilityRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel const& model, storm::dd::Add const& transitionMatrix, boost::optional> const& stateRewardVector, boost::optional> const& transitionRewardMatrix, storm::dd::Bdd const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory const& linearEquationSolverFactory, bool qualitative) { // Only compute the result if there is at least one reward model. STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Determine which states have a reward of infinity by definition. storm::dd::Bdd infinityStates; storm::dd::Bdd transitionMatrixBdd = transitionMatrix.notZero(); if (minimize) { infinityStates = storm::utility::graph::performProb1A(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0A(model, transitionMatrixBdd, model.getReachableStates(), targetStates)); } else { infinityStates = storm::utility::graph::performProb1E(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0E(model, transitionMatrixBdd, model.getReachableStates(), targetStates)); } infinityStates = !infinityStates && model.getReachableStates(); storm::dd::Bdd maybeStates = (!targetStates && !infinityStates) && model.getReachableStates(); STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states."); STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states."); STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); // Check whether we need to compute exact rewards for some states. if (qualitative) { // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. return std::unique_ptr(new SymbolicQuantitativeCheckResult(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one()))); } else { // If there are maybe states, we need to solve an equation system. if (!maybeStates.isZero()) { // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd odd(maybeStates); // Create the matrix and the vector for the equation system. storm::dd::Add maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add submatrix = transitionMatrix * maybeStatesAdd; // Then compute the state reward vector to use in the computation. storm::dd::Add subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero(); if (transitionRewardMatrix) { subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables()); } // Before cutting the non-maybe columns, we need to compute the sizes of the row groups. std::vector rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector(odd); // Finally cut away all columns targeting non-maybe states. submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); // Create the solution vector. std::vector x(maybeStates.getNonZeroCount(), ValueType(0.5)); // Translate the symbolic matrix/vector to their explicit representations. std::pair, std::vector> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd); // Now solve the resulting equation system. std::unique_ptr> solver = linearEquationSolverFactory.create(explicitRepresentation.first); solver->solveEquationSystem(minimize, x, explicitRepresentation.second); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr(new storm::modelchecker::HybridQuantitativeCheckResult(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity()), maybeStates, odd, x)); } else { return std::unique_ptr(new storm::modelchecker::SymbolicQuantitativeCheckResult(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity()))); } } } template storm::models::symbolic::Mdp const& HybridMdpPrctlModelChecker::getModel() const { return this->template getModelAs>(); } template class HybridMdpPrctlModelChecker; } }