/* * SparseMdpPrctlModelChecker.h * * Created on: 15.02.2013 * Author: Christian Dehnert */ #ifndef STORM_MODELCHECKER_PRCTL_SPARSEMDPPRCTLMODELCHECKER_H_ #define STORM_MODELCHECKER_PRCTL_SPARSEMDPPRCTLMODELCHECKER_H_ #include #include #include #include "src/modelchecker/prctl/AbstractModelChecker.h" #include "src/solver/AbstractNondeterministicLinearEquationSolver.h" #include "src/solver/GmmxxLinearEquationSolver.h" #include "src/models/Mdp.h" #include "src/utility/vector.h" #include "src/utility/graph.h" #include "src/settings/Settings.h" namespace storm { namespace modelchecker { namespace prctl { /*! * This class represents the base class for all PRCTL model checkers for MDPs. */ template class SparseMdpPrctlModelChecker : public AbstractModelChecker { public: /*! * Constructs a SparseMdpPrctlModelChecker with the given model. * * @param model The MDP to be checked. */ explicit SparseMdpPrctlModelChecker(storm::models::Mdp const& model, storm::solver::AbstractNondeterministicLinearEquationSolver* linearEquationSolver) : AbstractModelChecker(model), minimumOperatorStack(), linearEquationSolver(linearEquationSolver) { // Intentionally left empty. } /*! * Copy constructs a SparseMdpPrctlModelChecker from the given model checker. In particular, this means that the newly * constructed model checker will have the model of the given model checker as its associated model. */ explicit SparseMdpPrctlModelChecker(storm::modelchecker::prctl::SparseMdpPrctlModelChecker const& modelchecker) : AbstractModelChecker(modelchecker), minimumOperatorStack(), linearEquationSolver(new storm::solver::AbstractNondeterministicLinearEquationSolver()) { // Intentionally left empty. } /*! * Returns a constant reference to the MDP associated with this model checker. * @returns A constant reference to the MDP associated with this model checker. */ storm::models::Mdp const& getModel() const { return AbstractModelChecker::template getModel>(); } /*! * Checks the given formula that is a P/R operator without a bound. * * @param formula The formula to check. * @returns The set of states satisfying the formula represented by a bit vector. */ virtual std::vector checkNoBoundOperator(const storm::property::prctl::AbstractNoBoundOperator& formula) const { // Check if the operator was an non-optimality operator and report an error in that case. if (!formula.isOptimalityOperator()) { LOG4CPLUS_ERROR(logger, "Formula does not specify neither min nor max optimality, which is not meaningful over nondeterministic models."); throw storm::exceptions::InvalidArgumentException() << "Formula does not specify neither min nor max optimality, which is not meaningful over nondeterministic models."; } minimumOperatorStack.push(formula.isMinimumOperator()); std::vector result = formula.check(*this, false); minimumOperatorStack.pop(); return result; } /*! * Checks the given formula that is a bounded-until formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bounds 0 and 1. * @returns The probabilities for the given formula to hold on every state of the model associated with this model * checker. If the qualitative flag is set, exact probabilities might not be computed. */ virtual std::vector checkBoundedUntil(const storm::property::prctl::BoundedUntil& formula, bool qualitative) const { // First, we need to compute the states that satisfy the sub-formulas of the until-formula. storm::storage::BitVector leftStates = formula.getLeft().check(*this); storm::storage::BitVector rightStates = formula.getRight().check(*this); std::vector result(this->getModel().getNumberOfStates()); // Determine the states that have 0 probability of reaching the target states. storm::storage::BitVector statesWithProbabilityGreater0; if (this->minimumOperatorStack.top()) { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(this->getModel(), this->getModel().getBackwardTransitions(), leftStates, rightStates, true, formula.getBound()); } else { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(this->getModel(), this->getModel().getBackwardTransitions(), leftStates, rightStates, true, formula.getBound()); } // Check if we already know the result (i.e. probability 0) for all initial states and // don't compute anything in this case. if (this->getInitialStates().isDisjointFrom(statesWithProbabilityGreater0)) { LOG4CPLUS_INFO(logger, "The probabilities for the initial states were determined in a preprocessing step." << " No exact probabilities were computed."); // Set the values for all maybe-states to 0.5 to indicate that their probability values are not 0 (and // not necessarily 1). storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, Type(0.5)); } else { // In this case we have have to compute the probabilities. // We can eliminate the rows and columns from the original transition probability matrix that have probability 0. storm::storage::SparseMatrix submatrix = this->getModel().getTransitionMatrix().getSubmatrix(statesWithProbabilityGreater0, this->getModel().getNondeterministicChoiceIndices()); // Get the "new" nondeterministic choice indices for the submatrix. std::vector subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(statesWithProbabilityGreater0); // Compute the new set of target states in the reduced system. storm::storage::BitVector rightStatesInReducedSystem = statesWithProbabilityGreater0 % rightStates; // Make all rows absorbing that satisfy the second sub-formula. submatrix.makeRowsAbsorbing(rightStatesInReducedSystem, subNondeterministicChoiceIndices); // Create the vector with which to multiply. std::vector subresult(statesWithProbabilityGreater0.getNumberOfSetBits()); storm::utility::vector::setVectorValues(subresult, rightStatesInReducedSystem, storm::utility::constGetOne()); if (linearEquationSolver != nullptr) { this->linearEquationSolver->performMatrixVectorMultiplication(this->minimumOperatorStack.top(), submatrix, subresult, subNondeterministicChoiceIndices, nullptr, formula.getBound()); } else { throw storm::exceptions::InvalidStateException() << "No valid linear equation solver available."; } // Set the values of the resulting vector accordingly. storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, subresult); storm::utility::vector::setVectorValues(result, ~statesWithProbabilityGreater0, storm::utility::constGetZero()); } return result; } /*! * Checks the given formula that is a next formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bounds 0 and 1. * @returns The probabilities for the given formula to hold on every state of the model associated with this model * checker. If the qualitative flag is set, exact probabilities might not be computed. */ virtual std::vector checkNext(const storm::property::prctl::Next& formula, bool qualitative) const { // First, we need to compute the states that satisfy the sub-formula of the next-formula. storm::storage::BitVector nextStates = formula.getChild().check(*this); // Create the vector with which to multiply and initialize it correctly. std::vector result(this->getModel().getNumberOfStates()); storm::utility::vector::setVectorValues(result, nextStates, storm::utility::constGetOne()); if (linearEquationSolver != nullptr) { this->linearEquationSolver->performMatrixVectorMultiplication(this->minimumOperatorStack.top(), this->getModel().getTransitionMatrix(), result, this->getModel().getNondeterministicChoiceIndices()); } else { throw storm::exceptions::InvalidStateException() << "No valid linear equation solver available."; } return result; } /*! * Checks the given formula that is a bounded-eventually formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bounds 0 and 1. * @returns The probabilities for the given formula to hold on every state of the model associated with this model * checker. If the qualitative flag is set, exact probabilities might not be computed. */ virtual std::vector checkBoundedEventually(const storm::property::prctl::BoundedEventually& formula, bool qualitative) const { // Create equivalent temporary bounded until formula and check it. storm::property::prctl::BoundedUntil temporaryBoundedUntilFormula(new storm::property::prctl::Ap("true"), formula.getChild().clone(), formula.getBound()); return this->checkBoundedUntil(temporaryBoundedUntilFormula, qualitative); } /*! * Checks the given formula that is an eventually formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bounds 0 and 1. * @returns The probabilities for the given formula to hold on every state of the model associated with this model * checker. If the qualitative flag is set, exact probabilities might not be computed. */ virtual std::vector checkEventually(const storm::property::prctl::Eventually& formula, bool qualitative) const { // Create equivalent temporary until formula and check it. storm::property::prctl::Until temporaryUntilFormula(new storm::property::prctl::Ap("true"), formula.getChild().clone()); return this->checkUntil(temporaryUntilFormula, qualitative); } /*! * Checks the given formula that is a globally formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bounds 0 and 1. * @returns The probabilities for the given formula to hold on every state of the model associated with this model * checker. If the qualitative flag is set, exact probabilities might not be computed. */ virtual std::vector checkGlobally(const storm::property::prctl::Globally& formula, bool qualitative) const { // Create "equivalent" temporary eventually formula and check it. storm::property::prctl::Eventually temporaryEventuallyFormula(new storm::property::prctl::Not(formula.getChild().clone())); std::vector result = this->checkEventually(temporaryEventuallyFormula, qualitative); // Now subtract the resulting vector from the constant one vector to obtain final result. storm::utility::vector::subtractFromConstantOneVector(result); return result; } /*! * Check the given formula that is an until formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bounds 0 and 1. * @param scheduler If qualitative is false and this vector is non-null and has as many elements as * there are states in the MDP, this vector will represent a scheduler for the model that achieves the probability * returned by model checking. To this end, the vector will hold the nondeterministic choice made for each state. * @return The probabilities for the given formula to hold on every state of the model associated with this model * checker. If the qualitative flag is set, exact probabilities might not be computed. */ virtual std::vector checkUntil(const storm::property::prctl::Until& formula, bool qualitative) const { return this->checkUntil(this->minimumOperatorStack.top(), formula, qualitative, nullptr); } /*! * Check the given formula that is an until formula. * * @param minimize If set, the probability is minimized and maximized otherwise. * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bounds 0 and 1. * @param scheduler If qualitative is false and this vector is non-null and has as many elements as * there are states in the MDP, this vector will represent a scheduler for the model that achieves the probability * returned by model checking. To this end, the vector will hold the nondeterministic choice made for each state. * @return The probabilities for the given formula to hold on every state of the model associated with this model * checker. If the qualitative flag is set, exact probabilities might not be computed. */ virtual std::vector checkUntil(bool minimize, const storm::property::prctl::Until& formula, bool qualitative, std::vector* scheduler) const { // First, we need to compute the states that satisfy the sub-formulas of the until-formula. storm::storage::BitVector leftStates = formula.getLeft().check(*this); storm::storage::BitVector rightStates = formula.getRight().check(*this); // Then, we need to identify the states which have to be taken out of the matrix, i.e. // all states that have probability 0 and 1 of satisfying the until-formula. std::pair statesWithProbability01; if (minimize) { statesWithProbability01 = storm::utility::graph::performProb01Min(this->getModel(), leftStates, rightStates); } else { statesWithProbability01 = storm::utility::graph::performProb01Max(this->getModel(), leftStates, rightStates); } storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first); storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second); storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1); LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states."); LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states."); LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector result(this->getModel().getNumberOfStates()); // Check whether we need to compute exact probabilities for some states. if (this->getInitialStates().isDisjointFrom(maybeStates) || qualitative) { if (qualitative) { LOG4CPLUS_INFO(logger, "The formula was checked qualitatively. No exact probabilities were computed."); } else { LOG4CPLUS_INFO(logger, "The probabilities for the initial states were determined in a preprocessing step." << " No exact probabilities were computed."); } // Set the values for all maybe-states to 0.5 to indicate that their probability values // are neither 0 nor 1. storm::utility::vector::setVectorValues(result, maybeStates, Type(0.5)); } else { // In this case we have have to compute the probabilities. // First, we can eliminate the rows and columns from the original transition probability matrix for states // whose probabilities are already known. storm::storage::SparseMatrix submatrix = this->getModel().getTransitionMatrix().getSubmatrix(maybeStates, this->getModel().getNondeterministicChoiceIndices()); // Get the "new" nondeterministic choice indices for the submatrix. std::vector subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(maybeStates, this->getModel().getNondeterministicChoiceIndices(), statesWithProbability1, submatrix.getRowCount()); // Create vector for results for maybe states. std::vector x(maybeStates.getNumberOfSetBits()); // Solve the corresponding system of equations. if (linearEquationSolver != nullptr) { this->linearEquationSolver->solveEquationSystem(minimize, submatrix, x, b, subNondeterministicChoiceIndices); } else { throw storm::exceptions::InvalidStateException() << "No valid linear equation solver available."; } // Set values of resulting vector according to result. storm::utility::vector::setVectorValues(result, maybeStates, x); } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues(result, statesWithProbability0, storm::utility::constGetZero()); storm::utility::vector::setVectorValues(result, statesWithProbability1, storm::utility::constGetOne()); // If we were required to generate a scheduler, do so now. if (scheduler != nullptr) { this->computeTakenChoices(this->minimumOperatorStack.top(), false, result, *scheduler, this->getModel().getNondeterministicChoiceIndices()); } return result; } /*! * Checks the given formula that is an instantaneous reward formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bound 0. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bound 0. * @returns The reward values for the given formula for every state of the model associated with this model * checker. If the qualitative flag is set, exact values might not be computed. */ virtual std::vector checkInstantaneousReward(const storm::property::prctl::InstantaneousReward& formula, bool qualitative) const { // Only compute the result if the model has a state-based reward model. if (!this->getModel().hasStateRewards()) { LOG4CPLUS_ERROR(logger, "Missing (state-based) reward model for formula."); throw storm::exceptions::InvalidPropertyException() << "Missing (state-based) reward model for formula."; } // Initialize result to state rewards of the model. std::vector result(this->getModel().getStateRewardVector()); if (linearEquationSolver != nullptr) { this->linearEquationSolver->performMatrixVectorMultiplication(this->minimumOperatorStack.top(), this->getModel().getTransitionMatrix(), result, this->getModel().getNondeterministicChoiceIndices(), nullptr, formula.getBound()); } else { throw storm::exceptions::InvalidStateException() << "No valid linear equation solver available."; } return result; } /*! * Check the given formula that is a cumulative reward formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bound 0. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bound 0. * @returns The reward values for the given formula for every state of the model associated with this model * checker. If the qualitative flag is set, exact values might not be computed. */ virtual std::vector checkCumulativeReward(const storm::property::prctl::CumulativeReward& formula, bool qualitative) const { // Only compute the result if the model has at least one reward model. if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) { LOG4CPLUS_ERROR(logger, "Missing reward model for formula."); throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula."; } // Compute the reward vector to add in each step based on the available reward models. std::vector totalRewardVector; if (this->getModel().hasTransitionRewards()) { totalRewardVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix()); if (this->getModel().hasStateRewards()) { storm::utility::vector::addVectorsInPlace(totalRewardVector, this->getModel().getStateRewardVector()); } } else { totalRewardVector = std::vector(this->getModel().getStateRewardVector()); } // Initialize result to either the state rewards of the model or the null vector. std::vector result; if (this->getModel().hasStateRewards()) { result = std::vector(this->getModel().getStateRewardVector()); } else { result.resize(this->getModel().getNumberOfStates()); } if (linearEquationSolver != nullptr) { this->linearEquationSolver->performMatrixVectorMultiplication(this->minimumOperatorStack.top(), this->getModel().getTransitionMatrix(), result, this->getModel().getNondeterministicChoiceIndices(), &totalRewardVector, formula.getBound()); } else { throw storm::exceptions::InvalidStateException() << "No valid linear equation solver available."; } return result; } /*! * Checks the given formula that is a reachability reward formula. * * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bound 0. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bound 0. * @return The reward values for the given formula for every state of the model associated with this model * checker. If the qualitative flag is set, exact values might not be computed. */ virtual std::vector checkReachabilityReward(const storm::property::prctl::ReachabilityReward& formula, bool qualitative) const { return this->checkReachabilityReward(this->minimumOperatorStack.top(), formula, qualitative, nullptr); } /*! * Checks the given formula that is a reachability reward formula. * * @param minimize If set, the reward is to be minimized and maximized otherwise. * @param formula The formula to check. * @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the * results are only compared against the bound 0. If set to true, this will most likely results that are only * qualitatively correct, i.e. do not represent the correct value, but only the correct relation with respect to the * bound 0. * @param scheduler If qualitative is false and this vector is non-null and has as many elements as * there are states in the MDP, this vector will represent a scheduler for the model that achieves the probability * returned by model checking. To this end, the vector will hold the nondeterministic choice made for each state. * @return The reward values for the given formula for every state of the model associated with this model * checker. If the qualitative flag is set, exact values might not be computed. */ virtual std::vector checkReachabilityReward(bool minimize, const storm::property::prctl::ReachabilityReward& formula, bool qualitative, std::vector* scheduler) const { // Only compute the result if the model has at least one reward model. if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) { LOG4CPLUS_ERROR(logger, "Missing reward model for formula. Skipping formula"); throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula."; } // Determine the states for which the target predicate holds. storm::storage::BitVector targetStates = formula.getChild().check(*this); // Determine which states have a reward of infinity by definition. storm::storage::BitVector infinityStates; storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true); if (minimize) { infinityStates = std::move(storm::utility::graph::performProb1A(this->getModel(), this->getModel().getBackwardTransitions(), trueStates, targetStates)); } else { infinityStates = std::move(storm::utility::graph::performProb1E(this->getModel(), this->getModel().getBackwardTransitions(), trueStates, targetStates)); } infinityStates.complement(); storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates; LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states."); LOG4CPLUS_INFO(logger, "Found " << targetStates.getNumberOfSetBits() << " 'target' states."); LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector result(this->getModel().getNumberOfStates()); // Check whether we need to compute exact rewards for some states. if (this->getInitialStates().isDisjointFrom(maybeStates)) { LOG4CPLUS_INFO(logger, "The rewards for the initial states were determined in a preprocessing step." << " No exact rewards were computed."); // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. storm::utility::vector::setVectorValues(result, maybeStates, storm::utility::constGetOne()); } else { // In this case we have to compute the reward values for the remaining states. // We can eliminate the rows and columns from the original transition probability matrix for states // whose reward values are already known. storm::storage::SparseMatrix submatrix = this->getModel().getTransitionMatrix().getSubmatrix(maybeStates, this->getModel().getNondeterministicChoiceIndices()); // Get the "new" nondeterministic choice indices for the submatrix. std::vector subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector b(submatrix.getRowCount()); if (this->getModel().hasTransitionRewards()) { // If a transition-based reward model is available, we initialize the right-hand // side to the vector resulting from summing the rows of the pointwise product // of the transition probability matrix and the transition reward matrix. std::vector pointwiseProductRowSumVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix()); storm::utility::vector::selectVectorValues(b, maybeStates, this->getModel().getNondeterministicChoiceIndices(), pointwiseProductRowSumVector); if (this->getModel().hasStateRewards()) { // If a state-based reward model is also available, we need to add this vector // as well. As the state reward vector contains entries not just for the states // that we still consider (i.e. maybeStates), we need to extract these values // first. std::vector subStateRewards(b.size()); storm::utility::vector::selectVectorValuesRepeatedly(subStateRewards, maybeStates, this->getModel().getNondeterministicChoiceIndices(), this->getModel().getStateRewardVector()); storm::utility::vector::addVectorsInPlace(b, subStateRewards); } } else { // If only a state-based reward model is available, we take this vector as the // right-hand side. As the state reward vector contains entries not just for the // states that we still consider (i.e. maybeStates), we need to extract these values // first. storm::utility::vector::selectVectorValuesRepeatedly(b, maybeStates, this->getModel().getNondeterministicChoiceIndices(), this->getModel().getStateRewardVector()); } // Create vector for results for maybe states. std::vector x(maybeStates.getNumberOfSetBits()); // Solve the corresponding system of equations. if (linearEquationSolver != nullptr) { this->linearEquationSolver->solveEquationSystem(minimize, submatrix, x, b, subNondeterministicChoiceIndices); } else { throw storm::exceptions::InvalidStateException() << "No valid linear equation solver available."; } // Set values of resulting vector according to result. storm::utility::vector::setVectorValues(result, maybeStates, x); } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues(result, targetStates, storm::utility::constGetZero()); storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::constGetInfinity()); // If we were required to generate a scheduler, do so now. if (scheduler != nullptr) { this->computeTakenChoices(this->minimumOperatorStack.top(), true, result, *scheduler, this->getModel().getNondeterministicChoiceIndices()); } return result; } protected: /*! * Computes the vector of choices that need to be made to minimize/maximize the model checking result for each state. * * @param minimize If set, all choices are resolved such that the solution value becomes minimal and maximal otherwise. * @param nondeterministicResult The model checking result for nondeterministic choices of all states. * @param takenChoices The output vector that is to store the taken choices. * @param nondeterministicChoiceIndices The assignment of states to their nondeterministic choices in the matrix. */ void computeTakenChoices(bool minimize, bool addRewards, std::vector const& result, std::vector& takenChoices, std::vector const& nondeterministicChoiceIndices) const { std::vector temporaryResult(nondeterministicChoiceIndices.size() - 1); std::vector nondeterministicResult(result); storm::solver::GmmxxLinearEquationSolver solver; solver.performMatrixVectorMultiplication(this->getModel().getTransitionMatrix(), nondeterministicResult, nullptr, 1); if (addRewards) { std::vector totalRewardVector; if (this->getModel().hasTransitionRewards()) { std::vector totalRewardVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix()); if (this->getModel().hasStateRewards()) { std::vector stateRewards(totalRewardVector.size()); storm::utility::vector::selectVectorValuesRepeatedly(stateRewards, storm::storage::BitVector(this->getModel().getStateRewardVector().size(), true), this->getModel().getNondeterministicChoiceIndices(), this->getModel().getStateRewardVector()); storm::utility::vector::addVectorsInPlace(totalRewardVector, stateRewards); } } else { totalRewardVector.resize(nondeterministicResult.size()); storm::utility::vector::selectVectorValuesRepeatedly(totalRewardVector, storm::storage::BitVector(this->getModel().getStateRewardVector().size(), true), this->getModel().getNondeterministicChoiceIndices(), this->getModel().getStateRewardVector()); } storm::utility::vector::addVectorsInPlace(nondeterministicResult, totalRewardVector); } if (minimize) { storm::utility::vector::reduceVectorMin(nondeterministicResult, temporaryResult, nondeterministicChoiceIndices, &takenChoices); } else { storm::utility::vector::reduceVectorMax(nondeterministicResult, temporaryResult, nondeterministicChoiceIndices, &takenChoices); } } /*! * A stack used for storing whether we are currently computing min or max probabilities or rewards, respectively. * The topmost element is true if and only if we are currently computing minimum probabilities or rewards. */ mutable std::stack minimumOperatorStack; private: /*! * Computes the nondeterministic choice indices vector resulting from reducing the full system to the states given * by the parameter constraint. * * @param constraint A bit vector specifying which states are kept. * @returns A vector of the nondeterministic choice indices of the subsystem induced by the given constraint. */ std::vector computeNondeterministicChoiceIndicesForConstraint(storm::storage::BitVector const& constraint) const { // First, get a reference to the full nondeterministic choice indices. std::vector const& nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); // Reserve the known amount of slots for the resulting vector. std::vector subNondeterministicChoiceIndices(constraint.getNumberOfSetBits() + 1); uint_fast64_t currentRowCount = 0; uint_fast64_t currentIndexCount = 1; // Set the first element as this will clearly begin at offset 0. subNondeterministicChoiceIndices[0] = 0; // Loop over all states that need to be kept and copy the relative indices of the nondeterministic choices over // to the resulting vector. for (auto index : constraint) { subNondeterministicChoiceIndices[currentIndexCount] = currentRowCount + nondeterministicChoiceIndices[index + 1] - nondeterministicChoiceIndices[index]; currentRowCount += nondeterministicChoiceIndices[index + 1] - nondeterministicChoiceIndices[index]; ++currentIndexCount; } // Put a sentinel element at the end. subNondeterministicChoiceIndices[constraint.getNumberOfSetBits()] = currentRowCount; return subNondeterministicChoiceIndices; } // An object that is used for solving linear equations and performing matrix-vector multiplication. std::unique_ptr> linearEquationSolver; }; } // namespace prctl } // namespace modelchecker } // namespace storm #endif /* STORM_MODELCHECKER_PRCTL_SPARSEMDPPRCTLMODELCHECKER_H_ */