/*=========================================================================== Copyright (C) 2007-2017 Yves Renard, Julien Pommier. This file is a part of GetFEM++ GetFEM++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Library Exception for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. ===========================================================================*/ // RECTANGULAR_MATRIX_PARAM // RECTANGULAR_MATRIX_PARAM; // RECTANGULAR_MATRIX_PARAM; // ENDPARAM; #include "gmm/gmm_kernel.h" using std::endl; using std::cout; using std::cerr; using std::ends; using std::cin; using gmm::size_type; template <typename MAT1, typename MAT2, typename MAT3> bool test_procedure(const MAT1 &m1_, const MAT2 &m2_, const MAT3 &m3_) { MAT1 &m1 = const_cast<MAT1 &>(m1_); MAT2 &m2 = const_cast<MAT2 &>(m2_); MAT3 &m3 = const_cast<MAT3 &>(m3_); typedef typename gmm::linalg_traits<MAT1>::value_type T; typedef typename gmm::number_traits<T>::magnitude_type R; R prec = gmm::default_tol(R()); static size_type nb_iter(0); ++nb_iter; size_type k = gmm::mat_nrows(m1); size_type l = std::max(gmm::mat_ncols(m1), gmm::mat_nrows(m2)); size_type m = std::max(gmm::mat_ncols(m2), gmm::mat_nrows(m3)); size_type n = gmm::mat_ncols(m3); gmm::dense_matrix<T> m4(k, m); gmm::mult(m1, m2, m4); R error = mat_euclidean_norm(m4) - mat_euclidean_norm(m1) * mat_euclidean_norm(m2); if (error > prec * R(100)) GMM_ASSERT1(false, "Inconsistence of Frobenius norm" << error); error = mat_norm1(m4) - mat_norm1(m1) * mat_norm1(m2); if (error > prec * R(100)) GMM_ASSERT1(false, "Inconsistence of norm1 for matrices" << error); error = mat_norminf(m4) - mat_norminf(m1) * mat_norminf(m2); if (error > prec * R(100)) GMM_ASSERT1(false, "Inconsistence of norminf for matrices" << error); size_type mm = std::min(m, k); size_type nn = std::min(n, m); gmm::dense_matrix<T> m1bis(mm, l), m2bis(l, nn), m3bis(mm, nn); gmm::copy(gmm::sub_matrix(m1, gmm::sub_interval(0,mm), gmm::sub_interval(0,l)), m1bis); gmm::copy(gmm::sub_matrix(m2, gmm::sub_interval(0,l), gmm::sub_interval(0,nn)), m2bis); gmm::mult(m1bis, m2bis, m3bis); gmm::mult(gmm::sub_matrix(m1, gmm::sub_interval(0,mm), gmm::sub_interval(0,l)), gmm::sub_matrix(m2, gmm::sub_interval(0,l), gmm::sub_interval(0,nn)), gmm::sub_matrix(m3, gmm::sub_interval(0,mm), gmm::sub_interval(0,nn))); gmm::add(gmm::scaled(m3bis, T(-1)), gmm::sub_matrix(m3, gmm::sub_interval(0,mm), gmm::sub_interval(0,nn))); error = gmm::mat_euclidean_norm(gmm::sub_matrix(m3, gmm::sub_interval(0,mm), gmm::sub_interval(0,nn))); if (!(error <= prec * R(10000))) GMM_ASSERT1(false, "Error too large: " << error); if (nn <= gmm::mat_nrows(m3) && mm <= gmm::mat_ncols(m3)) { gmm::scale(m1, T(2)); gmm::mult(gmm::scaled(gmm::sub_matrix(m1, gmm::sub_interval(0,mm), gmm::sub_interval(0,l)), T(-1)), gmm::sub_matrix(m2, gmm::sub_interval(0,l), gmm::sub_interval(0,nn)), gmm::sub_matrix(gmm::transposed(m3), gmm::sub_interval(0,mm), gmm::sub_interval(0,nn))); gmm::add(gmm::scaled(m3bis, T(2)), gmm::transposed(gmm::sub_matrix(m3, gmm::sub_interval(0,nn), gmm::sub_interval(0,mm)))); error = gmm::mat_euclidean_norm(gmm::sub_matrix(m3, gmm::sub_interval(0,nn), gmm::sub_interval(0,mm))); if (!(error <= prec * R(10000))) GMM_ASSERT1(false, "Error too large: " << error); } if (nb_iter == 100) return true; return false; }