/* spychuzc.c */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2015 Andrew Makhorin, Department for Applied * Informatics, Moscow Aviation Institute, Moscow, Russia. All rights * reserved. E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "spychuzc.h" /*********************************************************************** * spy_chuzc_std - choose non-basic variable (dual textbook ratio test) * * This routine implements an improved dual textbook ratio test to * choose non-basic variable xN[q]. * * Current reduced costs of non-basic variables should be placed in the * array locations d[1], ..., d[n-m]. Note that d[j] is a value of dual * basic variable lambdaN[j] in the current basis. * * The parameter s specifies the sign of bound violation for basic * variable xB[p] chosen: s = +1.0 means that xB[p] violates its lower * bound, so dual non-basic variable lambdaB[p] = lambda^+B[p] * increases, and s = -1.0 means that xB[p] violates its upper bound, * so dual non-basic variable lambdaB[p] = lambda^-B[p] decreases. * (Thus, the dual ray parameter theta = s * lambdaB[p] >= 0.) * * Elements of p-th simplex table row t[p] = (t[p,j]) corresponding * to basic variable xB[p] should be placed in the array locations * trow[1], ..., trow[n-m]. * * The parameter tol_piv specifies a tolerance for elements of the * simplex table row t[p]. If |t[p,j]| < tol_piv, dual basic variable * lambdaN[j] is skipped, i.e. it is assumed that it does not depend on * the dual ray parameter theta. * * The parameters tol and tol1 specify tolerances used to increase the * choice freedom by simulating an artificial degeneracy as follows. * If lambdaN[j] = lambda^+N[j] >= 0 and d[j] <= +delta[j], or if * lambdaN[j] = lambda^-N[j] <= 0 and d[j] >= -delta[j], where * delta[j] = tol + tol1 * |cN[j]|, cN[j] is objective coefficient at * xN[j], then it is assumed that reduced cost d[j] is equal to zero. * * The routine determines the index 1 <= q <= n-m of non-basic variable * xN[q], for which corresponding dual basic variable lambda^+N[j] or * lambda^-N[j] reaches its zero bound first on increasing the dual ray * parameter theta, and returns p on exit. And if theta may increase * unlimitedly, the routine returns zero. */ int spy_chuzc_std(SPXLP *lp, const double d[/*1+n-m*/], double s, const double trow[/*1+n-m*/], double tol_piv, double tol, double tol1) { int m = lp->m; int n = lp->n; double *c = lp->c; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int j, k, q; double alfa, biga, delta, teta, teta_min; xassert(s == +1.0 || s == -1.0); /* nothing is chosen so far */ q = 0, teta_min = DBL_MAX, biga = 0.0; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches zero */ teta = (d[j] < +delta ? 0.0 : d[j] / alfa); } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches zero */ teta = (d[j] > -delta ? 0.0 : d[j] / alfa); } else { /* lambdaN[j] cannot reach zero on increasing theta */ continue; } /* choose non-basic variable xN[q] by corresponding dual basic * variable lambdaN[q] for which theta is minimal */ xassert(teta >= 0.0); alfa = (alfa >= 0.0 ? +alfa : -alfa); if (teta_min > teta || (teta_min == teta && biga < alfa)) q = j, teta_min = teta, biga = alfa; } return q; } /*********************************************************************** * spy_chuzc_harris - choose non-basic var. (dual Harris' ratio test) * * This routine implements dual Harris' ratio test to choose non-basic * variable xN[q]. * * All the parameters, except tol and tol1, as well as the returned * value have the same meaning as for the routine spx_chuzr_std (see * above). * * The parameters tol and tol1 specify tolerances on zero bound * violations for reduced costs of non-basic variables. For reduced * cost d[j] the tolerance is delta[j] = tol + tol1 |cN[j]|, where * cN[j] is objective coefficient at non-basic variable xN[j]. */ int spy_chuzc_harris(SPXLP *lp, const double d[/*1+n-m*/], double s, const double trow[/*1+n-m*/], double tol_piv, double tol, double tol1) { int m = lp->m; int n = lp->n; double *c = lp->c; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int j, k, q; double alfa, biga, delta, teta, teta_min; xassert(s == +1.0 || s == -1.0); /*--------------------------------------------------------------*/ /* first pass: determine teta_min for relaxed bounds */ /*--------------------------------------------------------------*/ teta_min = DBL_MAX; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches -delta */ teta = ((d[j] < 0.0 ? 0.0 : d[j]) + delta) / alfa; } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches +delta */ teta = ((d[j] > 0.0 ? 0.0 : d[j]) - delta) / alfa; } else { /* lambdaN[j] cannot reach zero on increasing theta */ continue; } xassert(teta >= 0.0); if (teta_min > teta) teta_min = teta; } /*--------------------------------------------------------------*/ /* second pass: choose non-basic variable xN[q] */ /*--------------------------------------------------------------*/ if (teta_min == DBL_MAX) { /* theta may increase unlimitedly */ q = 0; goto done; } /* nothing is chosen so far */ q = 0, biga = 0.0; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ /* determine theta on which lambdaN[j] reaches zero */ teta = d[j] / alfa; } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ /* determine theta on which lambdaN[j] reaches zero */ teta = d[j] / alfa; } else { /* lambdaN[j] cannot reach zero on increasing theta */ continue; } /* choose non-basic variable for which theta is not greater * than theta_min determined for relaxed bounds and which has * best (largest in magnitude) pivot */ alfa = (alfa >= 0.0 ? +alfa : -alfa); if (teta <= teta_min && biga < alfa) q = j, biga = alfa; } /* something must be chosen */ xassert(1 <= q && q <= n-m); done: return q; } /* eof */