#include "src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h" #include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "src/models/sparse/StandardRewardModel.h" #include "src/storage/MaximalEndComponentDecomposition.h" #include "src/utility/macros.h" #include "src/utility/vector.h" #include "src/utility/graph.h" #include "src/storage/expressions/Variable.h" #include "src/storage/expressions/Expression.h" #include "src/solver/MinMaxLinearEquationSolver.h" #include "src/solver/LpSolver.h" #include "src/exceptions/InvalidStateException.h" #include "src/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { namespace helper { template std::vector SparseMdpPrctlHelper::computeBoundedUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { std::vector result(transitionMatrix.getRowGroupCount(), storm::utility::zero()); // Determine the states that have 0 probability of reaching the target states. storm::storage::BitVector maybeStates; if (dir == OptimizationDirection::Minimize) { maybeStates = storm::utility::graph::performProbGreater0A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates, true, stepBound); } else { maybeStates = storm::utility::graph::performProbGreater0E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates, true, stepBound); } maybeStates &= ~psiStates; STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); if (!maybeStates.empty()) { // We can eliminate the rows and columns from the original transition probability matrix that have probability 0. storm::storage::SparseMatrix submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false); std::vector b = transitionMatrix.getConstrainedRowGroupSumVector(maybeStates, psiStates); // Create the vector with which to multiply. std::vector subresult(maybeStates.getNumberOfSetBits()); std::unique_ptr> solver = minMaxLinearEquationSolverFactory.create(submatrix); solver->performMatrixVectorMultiplication(dir, subresult, &b, stepBound); // Set the values of the resulting vector accordingly. storm::utility::vector::setVectorValues(result, maybeStates, subresult); } storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one()); return result; } template std::vector SparseMdpPrctlHelper::computeNextProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // Create the vector with which to multiply and initialize it correctly. std::vector result(transitionMatrix.getRowGroupCount()); storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one()); std::unique_ptr> solver = minMaxLinearEquationSolverFactory.create(transitionMatrix); solver->performMatrixVectorMultiplication(dir, result); return result; } template MDPSparseModelCheckingHelperReturnType SparseMdpPrctlHelper::computeUntilProbabilities(storm::solver::SolveGoal const& goal, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, bool producePolicy, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. // all states that have probability 0 and 1 of satisfying the until-formula. std::pair statesWithProbability01; if (goal.minimize()) { statesWithProbability01 = storm::utility::graph::performProb01Min(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates); } else { statesWithProbability01 = storm::utility::graph::performProb01Max(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates); } storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first); storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second); storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1); LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states."); LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states."); LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector result(transitionMatrix.getRowGroupCount()); // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues(result, statesWithProbability0, storm::utility::zero()); storm::utility::vector::setVectorValues(result, statesWithProbability1, storm::utility::one()); // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. storm::utility::vector::setVectorValues(result, maybeStates, ValueType(0.5)); } else { if (!maybeStates.empty()) { // In this case we have have to compute the probabilities. // First, we can eliminate the rows and columns from the original transition probability matrix for states // whose probabilities are already known. storm::storage::SparseMatrix submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector b = transitionMatrix.getConstrainedRowGroupSumVector(maybeStates, statesWithProbability1); // Create vector for results for maybe states. std::vector x(maybeStates.getNumberOfSetBits()); // Solve the corresponding system of equations. std::unique_ptr> solver = storm::solver::configureMinMaxLinearEquationSolver(goal, minMaxLinearEquationSolverFactory, submatrix); solver->solveEquationSystem(x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues(result, maybeStates, x); } } return MDPSparseModelCheckingHelperReturnType(std::move(result)); } template MDPSparseModelCheckingHelperReturnType SparseMdpPrctlHelper::computeUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, bool producePolicy, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { storm::solver::SolveGoal goal(dir); return std::move(computeUntilProbabilities(goal, transitionMatrix, backwardTransitions, phiStates, psiStates, qualitative, producePolicy, minMaxLinearEquationSolverFactory)); } template std::vector SparseMdpPrctlHelper::computeGloballyProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory, bool useMecBasedTechnique) { if (useMecBasedTechnique) { storm::storage::MaximalEndComponentDecomposition mecDecomposition(transitionMatrix, backwardTransitions, psiStates); storm::storage::BitVector statesInPsiMecs(transitionMatrix.getRowGroupCount()); for (auto const& mec : mecDecomposition) { for (auto const& stateActionsPair : mec) { statesInPsiMecs.set(stateActionsPair.first, true); } } return std::move(computeUntilProbabilities(dir, transitionMatrix, backwardTransitions, psiStates, statesInPsiMecs, qualitative, false, minMaxLinearEquationSolverFactory).values); } else { std::vector result = computeUntilProbabilities(dir == OptimizationDirection::Minimize ? OptimizationDirection::Maximize : OptimizationDirection::Minimize, transitionMatrix, backwardTransitions, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true), ~psiStates, qualitative, false, minMaxLinearEquationSolverFactory).values; for (auto& element : result) { element = storm::utility::one() - element; } return std::move(result); } } template template std::vector SparseMdpPrctlHelper::computeInstantaneousRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // Only compute the result if the model has a state-based reward this->getModel(). STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Initialize result to state rewards of the this->getModel(). std::vector result(rewardModel.getStateRewardVector()); std::unique_ptr> solver = minMaxLinearEquationSolverFactory.create(transitionMatrix); solver->performMatrixVectorMultiplication(dir, result, nullptr, stepCount); return result; } template template std::vector SparseMdpPrctlHelper::computeCumulativeRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Compute the reward vector to add in each step based on the available reward models. std::vector totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix); // Initialize result to either the state rewards of the model or the null vector. std::vector result; if (rewardModel.hasStateRewards()) { result = rewardModel.getStateRewardVector(); } else { result.resize(transitionMatrix.getRowGroupCount()); } std::unique_ptr> solver = minMaxLinearEquationSolverFactory.create(transitionMatrix); solver->performMatrixVectorMultiplication(dir, result, &totalRewardVector, stepBound); return result; } template template std::vector SparseMdpPrctlHelper::computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); return computeReachabilityRewardsHelper(dir, transitionMatrix, backwardTransitions, [&rewardModel] (uint_fast64_t rowCount, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::BitVector const& maybeStates) { return rewardModel.getTotalRewardVector(rowCount, transitionMatrix, maybeStates); }, targetStates, qualitative, minMaxLinearEquationSolverFactory); } #ifdef STORM_HAVE_CARL template std::vector SparseMdpPrctlHelper::computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::models::sparse::StandardRewardModel const& intervalRewardModel, bool lowerBoundOfIntervals, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // Only compute the result if the reward model is not empty. STORM_LOG_THROW(!intervalRewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); return computeReachabilityRewardsHelper(dir, transitionMatrix, backwardTransitions, \ [&] (uint_fast64_t rowCount, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::BitVector const& maybeStates) { std::vector result; result.reserve(rowCount); std::vector subIntervalVector = intervalRewardModel.getTotalRewardVector(rowCount, transitionMatrix, maybeStates); for (auto const& interval : subIntervalVector) { result.push_back(lowerBoundOfIntervals ? interval.lower() : interval.upper()); } return result; }, \ targetStates, qualitative, minMaxLinearEquationSolverFactory); } #endif template std::vector SparseMdpPrctlHelper::computeReachabilityRewardsHelper(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, std::function(uint_fast64_t, storm::storage::SparseMatrix const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { std::vector nondeterminsticChoiceIndices = transitionMatrix.getRowGroupIndices(); // Determine which states have a reward of infinity by definition. storm::storage::BitVector infinityStates; storm::storage::BitVector trueStates(transitionMatrix.getRowGroupCount(), true); if (dir == OptimizationDirection::Minimize) { infinityStates = storm::utility::graph::performProb1E(transitionMatrix, nondeterminsticChoiceIndices, backwardTransitions, trueStates, targetStates); } else { infinityStates = storm::utility::graph::performProb1A(transitionMatrix, nondeterminsticChoiceIndices, backwardTransitions, trueStates, targetStates); } infinityStates.complement(); storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates; LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states."); LOG4CPLUS_INFO(logger, "Found " << targetStates.getNumberOfSetBits() << " 'target' states."); LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector result(transitionMatrix.getRowGroupCount(), storm::utility::zero()); // Check whether we need to compute exact rewards for some states. if (qualitative) { LOG4CPLUS_INFO(logger, "The rewards for the initial states were determined in a preprocessing step. No exact rewards were computed."); // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. storm::utility::vector::setVectorValues(result, maybeStates, storm::utility::one()); } else { if (!maybeStates.empty()) { // In this case we have to compute the reward values for the remaining states. // We can eliminate the rows and columns from the original transition probability matrix for states // whose reward values are already known. storm::storage::SparseMatrix submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false); // Prepare the right-hand side of the equation system. std::vector b = totalStateRewardVectorGetter(submatrix.getRowCount(), transitionMatrix, maybeStates); // This also means that -- when minimizing -- we have to set the entries to infinity that have // any successor that is an "infinity state". This prevents the action from "being taken" and // forces the choice that leads to a reward less than infinity. uint_fast64_t currentRow = 0; for (auto state : maybeStates) { for (uint_fast64_t row = nondeterminsticChoiceIndices[state]; row < nondeterminsticChoiceIndices[state + 1]; ++row, ++currentRow) { for (auto const& element : transitionMatrix.getRow(row)) { if (infinityStates.get(element.getColumn())) { b[currentRow] = storm::utility::infinity(); break; } } } } // Create vector for results for maybe states. std::vector x(maybeStates.getNumberOfSetBits()); // Solve the corresponding system of equations. std::unique_ptr> solver = minMaxLinearEquationSolverFactory.create(submatrix); solver->solveEquationSystem(dir, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues(result, maybeStates, x); } } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity()); return result; } template std::vector SparseMdpPrctlHelper::computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // If there are no goal states, we avoid the computation and directly return zero. uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); if (psiStates.empty()) { return std::vector(numberOfStates, storm::utility::zero()); } // Likewise, if all bits are set, we can avoid the computation and set. if ((~psiStates).empty()) { return std::vector(numberOfStates, storm::utility::one()); } // Start by decomposing the MDP into its MECs. storm::storage::MaximalEndComponentDecomposition mecDecomposition(transitionMatrix, backwardTransitions); // Get some data members for convenience. std::vector const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices(); ValueType zero = storm::utility::zero(); //first calculate LRA for the Maximal End Components. storm::storage::BitVector statesInMecs(numberOfStates); std::vector stateToMecIndexMap(transitionMatrix.getColumnCount()); std::vector lraValuesForEndComponents(mecDecomposition.size(), zero); for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex]; lraValuesForEndComponents[currentMecIndex] = computeLraForMaximalEndComponent(dir, transitionMatrix, psiStates, mec); // Gather information for later use. for (auto const& stateChoicesPair : mec) { statesInMecs.set(stateChoicesPair.first); stateToMecIndexMap[stateChoicesPair.first] = currentMecIndex; } } // For fast transition rewriting, we build some auxiliary data structures. storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs; uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits(); uint_fast64_t lastStateNotInMecs = 0; uint_fast64_t numberOfStatesNotInMecs = 0; std::vector statesNotInMecsBeforeIndex; statesNotInMecsBeforeIndex.reserve(numberOfStates); for (auto state : statesNotContainedInAnyMec) { while (lastStateNotInMecs <= state) { statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs); ++lastStateNotInMecs; } ++numberOfStatesNotInMecs; } // Finally, we are ready to create the SSP matrix and right-hand side of the SSP. std::vector b; typename storm::storage::SparseMatrixBuilder sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size()); // If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications). uint_fast64_t currentChoice = 0; for (auto state : statesNotContainedInAnyMec) { sspMatrixBuilder.newRowGroup(currentChoice); for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) { std::vector auxiliaryStateToProbabilityMap(mecDecomposition.size()); b.push_back(storm::utility::zero()); for (auto element : transitionMatrix.getRow(choice)) { if (statesNotContainedInAnyMec.get(element.getColumn())) { // If the target state is not contained in an MEC, we can copy over the entry. sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); } else { // If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector // so that we are able to write the cumulative probability to the MEC into the matrix. auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); } } // Now insert all (cumulative) probability values that target an MEC. for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) { if (auxiliaryStateToProbabilityMap[mecIndex] != 0) { sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]); } } } } // Now we are ready to construct the choices for the auxiliary states. for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) { storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex]; sspMatrixBuilder.newRowGroup(currentChoice); for (auto const& stateChoicesPair : mec) { uint_fast64_t state = stateChoicesPair.first; boost::container::flat_set const& choicesInMec = stateChoicesPair.second; for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) { std::vector auxiliaryStateToProbabilityMap(mecDecomposition.size()); // If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state. if (choicesInMec.find(choice) == choicesInMec.end()) { b.push_back(storm::utility::zero()); for (auto element : transitionMatrix.getRow(choice)) { if (statesNotContainedInAnyMec.get(element.getColumn())) { // If the target state is not contained in an MEC, we can copy over the entry. sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); } else { // If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector // so that we are able to write the cumulative probability to the MEC into the matrix. auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); } } // Now insert all (cumulative) probability values that target an MEC. for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) { if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) { sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]); } } ++currentChoice; } } } // For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC. ++currentChoice; b.push_back(lraValuesForEndComponents[mecIndex]); } // Finalize the matrix and solve the corresponding system of equations. storm::storage::SparseMatrix sspMatrix = sspMatrixBuilder.build(currentChoice); std::vector sspResult(numberOfStatesNotInMecs + mecDecomposition.size()); std::unique_ptr> solver = minMaxLinearEquationSolverFactory.create(sspMatrix); solver->solveEquationSystem(dir, sspResult, b); // Prepare result vector. std::vector result(numberOfStates, zero); // Set the values for states not contained in MECs. storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, sspResult); // Set the values for all states in MECs. for (auto state : statesInMecs) { result[state] = sspResult[firstAuxiliaryStateIndex + stateToMecIndexMap[state]]; } return result; } template ValueType SparseMdpPrctlHelper::computeLraForMaximalEndComponent(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::BitVector const& psiStates, storm::storage::MaximalEndComponent const& mec) { std::shared_ptr solver = storm::utility::solver::getLpSolver("LRA for MEC"); solver->setOptimizationDirection(invert(dir)); // First, we need to create the variables for the problem. std::map stateToVariableMap; for (auto const& stateChoicesPair : mec) { std::string variableName = "h" + std::to_string(stateChoicesPair.first); stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName); } storm::expressions::Variable lambda = solver->addUnboundedContinuousVariable("L", 1); solver->update(); // Now we encode the problem as constraints. for (auto const& stateChoicesPair : mec) { uint_fast64_t state = stateChoicesPair.first; // Now, based on the type of the state, create a suitable constraint. for (auto choice : stateChoicesPair.second) { storm::expressions::Expression constraint = -lambda; ValueType r = 0; for (auto element : transitionMatrix.getRow(choice)) { constraint = constraint + stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); if (psiStates.get(element.getColumn())) { r += element.getValue(); } } constraint = solver->getConstant(r) + constraint; if (dir == OptimizationDirection::Minimize) { constraint = stateToVariableMap.at(state) <= constraint; } else { constraint = stateToVariableMap.at(state) >= constraint; } solver->addConstraint("state" + std::to_string(state) + "," + std::to_string(choice), constraint); } } solver->optimize(); return solver->getContinuousValue(lambda); } template std::unique_ptr SparseMdpPrctlHelper::computeConditionalProbabilities(OptimizationDirection dir, storm::storage::sparse::state_type initialState, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::storage::BitVector const& conditionStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // For the max-case, we can simply take the given target states. For the min-case, however, we need to // find the MECs of non-target states and make them the new target states. storm::storage::BitVector fixedTargetStates; if (dir == OptimizationDirection::Maximize) { fixedTargetStates = targetStates; } else { fixedTargetStates = storm::storage::BitVector(targetStates.size()); storm::storage::MaximalEndComponentDecomposition mecDecomposition(transitionMatrix, backwardTransitions, ~targetStates); for (auto const& mec : mecDecomposition) { for (auto const& stateActionsPair : mec) { fixedTargetStates.set(stateActionsPair.first); } } } // We solve the max-case and later adjust the result if the optimization direction was to minimize. storm::storage::BitVector initialStatesBitVector(transitionMatrix.getRowGroupCount()); initialStatesBitVector.set(initialState); storm::storage::BitVector allStates(initialStatesBitVector.size(), true); std::vector conditionProbabilities = std::move(computeUntilProbabilities(OptimizationDirection::Maximize, transitionMatrix, backwardTransitions, allStates, conditionStates, false, false, minMaxLinearEquationSolverFactory).values); // If the conditional probability is undefined for the initial state, we return directly. if (storm::utility::isZero(conditionProbabilities[initialState])) { return std::unique_ptr(new ExplicitQuantitativeCheckResult(initialState, storm::utility::infinity())); } std::vector targetProbabilities = std::move(computeUntilProbabilities(OptimizationDirection::Maximize, transitionMatrix, backwardTransitions, allStates, fixedTargetStates, false, false, minMaxLinearEquationSolverFactory).values); storm::storage::BitVector statesWithProbabilityGreater0E(transitionMatrix.getRowGroupCount(), true); storm::storage::sparse::state_type state = 0; for (auto const& element : conditionProbabilities) { if (storm::utility::isZero(element)) { statesWithProbabilityGreater0E.set(state, false); } ++state; } // Determine those states that need to be equipped with a restart mechanism. storm::storage::BitVector problematicStates = storm::utility::graph::performProb0E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, allStates, conditionStates | fixedTargetStates); // Otherwise, we build the transformed MDP. storm::storage::BitVector relevantStates = storm::utility::graph::getReachableStates(transitionMatrix, initialStatesBitVector, allStates, conditionStates | fixedTargetStates); std::vector numberOfStatesBeforeRelevantStates = relevantStates.getNumberOfSetBitsBeforeIndices(); storm::storage::sparse::state_type newGoalState = relevantStates.getNumberOfSetBits(); storm::storage::sparse::state_type newStopState = newGoalState + 1; storm::storage::sparse::state_type newFailState = newStopState + 1; // Build the transitions of the (relevant) states of the original model. storm::storage::SparseMatrixBuilder builder(0, newFailState + 1, 0, true, true); uint_fast64_t currentRow = 0; for (auto state : relevantStates) { builder.newRowGroup(currentRow); if (fixedTargetStates.get(state)) { builder.addNextValue(currentRow, newGoalState, conditionProbabilities[state]); if (!storm::utility::isZero(conditionProbabilities[state])) { builder.addNextValue(currentRow, newFailState, 1 - conditionProbabilities[state]); } ++currentRow; } else if (conditionStates.get(state)) { builder.addNextValue(currentRow, newGoalState, targetProbabilities[state]); if (!storm::utility::isZero(targetProbabilities[state])) { builder.addNextValue(currentRow, newStopState, 1 - targetProbabilities[state]); } ++currentRow; } else { for (uint_fast64_t row = transitionMatrix.getRowGroupIndices()[state]; row < transitionMatrix.getRowGroupIndices()[state + 1]; ++row) { for (auto const& successorEntry : transitionMatrix.getRow(row)) { builder.addNextValue(currentRow, numberOfStatesBeforeRelevantStates[successorEntry.getColumn()], successorEntry.getValue()); } ++currentRow; } if (problematicStates.get(state)) { builder.addNextValue(currentRow, numberOfStatesBeforeRelevantStates[initialState], storm::utility::one()); ++currentRow; } } } // Now build the transitions of the newly introduced states. builder.newRowGroup(currentRow); builder.addNextValue(currentRow, newGoalState, storm::utility::one()); ++currentRow; builder.newRowGroup(currentRow); builder.addNextValue(currentRow, newStopState, storm::utility::one()); ++currentRow; builder.newRowGroup(currentRow); builder.addNextValue(currentRow, numberOfStatesBeforeRelevantStates[initialState], storm::utility::one()); ++currentRow; // Finally, build the matrix and dispatch the query as a reachability query. storm::storage::BitVector newGoalStates(newFailState + 1); newGoalStates.set(newGoalState); storm::storage::SparseMatrix newTransitionMatrix = builder.build(); storm::storage::SparseMatrix newBackwardTransitions = newTransitionMatrix.transpose(true); std::vector goalProbabilities = std::move(computeUntilProbabilities(OptimizationDirection::Maximize, newTransitionMatrix, newBackwardTransitions, storm::storage::BitVector(newFailState + 1, true), newGoalStates, false, false, minMaxLinearEquationSolverFactory).values); return std::unique_ptr(new ExplicitQuantitativeCheckResult(initialState, dir == OptimizationDirection::Maximize ? goalProbabilities[numberOfStatesBeforeRelevantStates[initialState]] : storm::utility::one() - goalProbabilities[numberOfStatesBeforeRelevantStates[initialState]])); } template class SparseMdpPrctlHelper; template std::vector SparseMdpPrctlHelper::computeInstantaneousRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::models::sparse::StandardRewardModel const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); template std::vector SparseMdpPrctlHelper::computeCumulativeRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::models::sparse::StandardRewardModel const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); template std::vector SparseMdpPrctlHelper::computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, storm::models::sparse::StandardRewardModel const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); } } }