#ifndef STORM_UTIL_SHORTESTPATHS_H_ #define STORM_UTIL_SHORTESTPATHS_H_ #include #include #include #include "src/models/sparse/Model.h" #include "src/storage/sparse/StateType.h" #include "constants.h" // NOTE: You'll (eventually) find the usual API documentation below; // for more information about the purpose, design decisions, // etc., you may consult `shortestPath.md`. - Tom // TODO: test whether using BitVector instead of vector is // faster for storing predecessors etc. // Now using BitVectors instead of vector in the API because // BitVectors are used throughout Storm to represent a (unordered) list // of states. // (Even though both initialStates and targets are probably very sparse.) namespace storm { namespace utility { namespace ksp { using state_t = storage::sparse::state_type; using OrderedStateList = std::vector; using BitVector = storage::BitVector; // -- helper structs/classes ----------------------------------------------------------------------------- template struct Path { boost::optional predecessorNode; unsigned long predecessorK; T distance; // arbitrary order for std::set bool operator<(const Path& rhs) const { if (predecessorNode != rhs.predecessorNode) { return predecessorNode < rhs.predecessorNode; } return predecessorK < predecessorK; } bool operator==(const Path& rhs) const { return (predecessorNode == rhs.predecessorNode) && (predecessorK == rhs.predecessorK); } }; // when using the raw matrix/vector invocation, this enum parameter // forces the caller to declare whether the matrix has the evil I-P // format, which requires back-conversion of the entries enum class MatrixFormat { straight, iMinusP }; // ------------------------------------------------------------------------------------------------------- template class ShortestPathsGenerator { public: using Matrix = storage::SparseMatrix; using StateProbMap = std::unordered_map; using Model = models::sparse::Model; /*! * Performs precomputations (including meta-target insertion and Dijkstra). * Modifications are done locally, `model` remains unchanged. * Target (group) cannot be changed. */ ShortestPathsGenerator(Model const& model, BitVector const& targetBV); // allow alternative ways of specifying the target, // all of which will be converted to BitVector and delegated to constructor above ShortestPathsGenerator(Model const& model, state_t singleTarget); ShortestPathsGenerator(Model const& model, std::vector const& targetList); ShortestPathsGenerator(Model const& model, std::string const& targetLabel = "target"); // a further alternative: use transition matrix of maybe-states // combined with target vector (e.g., the instantiated matrix/vector from SamplingModel); // in this case separately specifying a target makes no sense ShortestPathsGenerator(Matrix const& transitionMatrix, std::vector const& targetProbVector, BitVector const& initialStates, MatrixFormat matrixFormat); ShortestPathsGenerator(Matrix const& maybeTransitionMatrix, StateProbMap const& targetProbMap, BitVector const& initialStates, MatrixFormat matrixFormat); inline ~ShortestPathsGenerator(){} /*! * Returns distance (i.e., probability) of the KSP. * Computes KSP if not yet computed. * @throws std::invalid_argument if no such k-shortest path exists */ T getDistance(unsigned long k); /*! * Returns the states that occur in the KSP. * For a path-traversal (in order and with duplicates), see `getKSP`. * Computes KSP if not yet computed. * @throws std::invalid_argument if no such k-shortest path exists */ storage::BitVector getStates(unsigned long k); /*! * Returns the states of the KSP as back-to-front traversal. * Computes KSP if not yet computed. * @throws std::invalid_argument if no such k-shortest path exists */ OrderedStateList getPathAsList(unsigned long k); private: Matrix const& transitionMatrix; // FIXME: store reference instead (?) state_t numStates; // includes meta-target, i.e. states in model + 1 state_t metaTarget; BitVector initialStates; StateProbMap targetProbMap; MatrixFormat matrixFormat; std::vector graphPredecessors; std::vector> shortestPathPredecessors; std::vector shortestPathSuccessors; std::vector shortestPathDistances; std::vector>> kShortestPaths; std::vector>> candidatePaths; /*! * Computes list of predecessors for all nodes. * Reachability is not considered; a predecessor is simply any node that has an edge leading to the node in question. * Requires `transitionMatrix`. * Modifies `graphPredecessors`. */ void computePredecessors(); /*! * Computes shortest path distances and predecessors. * Requires `model`, `numStates`, `transitionMatrix`. * Modifies `shortestPathPredecessors` and `shortestPathDistances`. */ void performDijkstra(); /*! * Computes list of shortest path successor nodes from predecessor list. * Requires `shortestPathPredecessors`, `numStates`. * Modifies `shortestPathSuccessors`. */ void computeSPSuccessors(); /*! * Constructs and stores the implicit shortest path representations (see `Path`) for the (1-)shortest paths. * Requires `shortestPathPredecessors`, `shortestPathDistances`, `model`, `numStates`. * Modifies `kShortestPaths`. */ void initializeShortestPaths(); /*! * Main step of REA algorithm. TODO: Document further. */ void computeNextPath(state_t node, unsigned long k); /*! * Computes k-shortest path if not yet computed. * @throws std::invalid_argument if no such k-shortest path exists */ void computeKSP(unsigned long k); /*! * Recurses over the path and prints the nodes. Intended for debugging. */ void printKShortestPath(state_t targetNode, unsigned long k, bool head=true) const; /*! * Returns actual distance for real edges, 1 for edges to meta-target. */ T getEdgeDistance(state_t tailNode, state_t headNode) const; // --- tiny helper fcts --- inline bool isInitialState(state_t node) const { return find(initialStates.begin(), initialStates.end(), node) != initialStates.end(); } inline bool isMetaTargetPredecessor(state_t node) const { return targetProbMap.count(node) == 1; } // I dislike this. But it is necessary if we want to handle those ugly I-P matrices inline T convertDistance(state_t tailNode, state_t headNode, T distance) const { if (matrixFormat == MatrixFormat::straight) { return distance; } else { if (tailNode == headNode) { // diagonal: 1-p = dist return one() - distance; } else { // non-diag: -p = dist return zero() - distance; } } } /*! * Returns a map where each state of the input BitVector is mapped to 1 (`one`). */ inline StateProbMap allProbOneMap(BitVector bitVector) const { StateProbMap stateProbMap; for (state_t node : bitVector) { stateProbMap.emplace(node, one()); // FIXME check rvalue warning (here and below) } return stateProbMap; } /*! * Given a vector of probabilities so that the `i`th entry corresponds to the * probability of state `i`, returns an equivalent map of only the non-zero entries. */ inline std::unordered_map vectorToMap(std::vector probVector) const { //assert(probVector.size() == numStates); // numStates may not yet be initialized! // still true? std::unordered_map stateProbMap; for (state_t i = 0; i < probVector.size(); i++) { T probEntry = probVector[i]; // only non-zero entries (i.e. true transitions) are added to the map if (probEntry != 0) { assert(0 < probEntry <= 1); stateProbMap.emplace(i, probEntry); } } return stateProbMap; } // ----------------------- }; } } } #endif //STORM_UTIL_SHORTESTPATHS_H_