
CNF Satisfiability Problem

Andrew Makhorin <mao@gnu.org>

August 2011

1 Introduction

The Satisfiability Problem (SAT) is a classic combinatorial problem. Given a Boolean formula
of n variables

f(x1, x2, . . . , xn), (1.1)

this problem is to find such values of the variables, on which the formula takes on the value true.

The CNF Satisfiability Problem (CNF-SAT) is a version of the Satisfiability Problem, where
the Boolean formula (1.1) is specified in the Conjunctive Normal Form (CNF), that means that it
is a conjunction of clauses, where a clause is a disjunction of literals, and a literal is a variable or
its negation. For example:

(x1 ∨ x2) & (¬x2 ∨ x3 ∨ ¬x4) & (¬x1 ∨ x4). (1.2)

Here x1, x2, x3, x4 are Boolean variables to be assigned, ¬ means negation (logical not), ∨ means
disjunction (logical or), and & means conjunction (logical and). One may note that the formula
(1.2) is satisfiable, because on x1 = true, x2 = false, x3 = false, and x4 = true it takes on the value
true. If a formula is not satisfiable, it is called unsatisfiable, that means that it takes on the value
false on any values of its variables.

Any CNF-SAT problem can be easily translated to a 0-1 programming problem as follows.
A Boolean variable x can be modeled by a binary variable in a natural way: x = 1 means that
x takes on the value true, and x = 0 means that x takes on the value false. Then, if a literal is
a negated variable, i.e. t = ¬x, it can be expressed as t = 1 − x. Since a formula in CNF is a
conjunction of clauses, to provide its satisfiability we should require all its clauses to take on the
value true. A particular clause is a disjunction of literals:

t ∨ t′ ∨ t′′ . . . , (1.3)

so it takes on the value true iff at least one of its literals takes on the value true, that can be
expressed as the following inequality constraint:

t+ t′ + t′′ + . . . ≥ 1. (1.4)

Note that no objective function is used in this case, because only a feasible solution needs to be
found.

1

For example, the formula (1.2) can be translated to the following constraints:

x1 + x2 ≥ 1
(1− x2) + x3 + (1− x4) ≥ 1

(1− x1) + x4 ≥ 1

x1, x2, x3, x4 ∈ {0, 1}

Carrying out all constant terms to the right-hand side gives corresponding 0-1 programming problem
in the standard format:

x1 + x2 ≥ 1
− x2 + x3 − x4 ≥ −1

−x1 + x4 ≥ 0

x1, x2, x3, x4 ∈ {0, 1}

In general case translation of a CNF-SAT problem results in the following 0-1 programming
problem: ∑

j∈J+
i

xj −
∑
j∈J−

i

xj ≥ 1− |J−
i |, i = 1, . . . ,m (1.5)

xj ∈ {0, 1}, j = 1, . . . , n (1.6)

where n is the number of variables, m is the number of clauses (inequality constraints),
J+
i ⊆ {1, . . . , n} is a subset of variables, whose literals in i-th clause do not have negation, and

J−
i ⊆ {1, . . . , n} is a subset of variables, whose literals in i-th clause are negations of that variables.

It is assumed that J+
i ∩ J−

i = ∅ for all i.

2 GLPK API Routines

2.1 glp read cnfsat — read CNF-SAT problem data in DIMACS format

Synopsis

int glp_read_cnfsat(glp_prob *P, const char *fname);

Description

The routine glp_read_cnfsat reads the CNF-SAT problem data from a text file in DIMACS
format and automatically translates the data to corresponding 0-1 programming problem instance
(1.5)–(1.6).

The parameter P specifies the problem object, to which the 0-1 programming problem instance
should be stored. Note that before reading data the current content of the problem object is
completely erased with the routine glp_erase_prob.

The character string fname specifies the name of a text file to be read in. (If the file name ends
with the suffix ‘.gz’, the file is assumed to be compressed, in which case the routine decompresses
it “on the fly”.)

2

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

DIMACS CNF-SAT problem format1

The DIMACS input file is a plain ASCII text file. It contains lines of several types described
below. A line is terminated with an end-of-line character. Fields in each line are separated by at
least one blank space.

Comment lines. Comment lines give human-readable information about the file and are ignored
by programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line must appear before any
clause lines. It has the following format:

p cnf VARIABLES CLAUSES

The lower-case character p signifies that this is a problem line. The three character problem
designator cnf identifies the file as containing specification information for the CNF-SAT problem.
The VARIABLES field contains an integer value specifying n, the number of variables in the instance.
The CLAUSES field contains an integer value specifying m, the number of clauses in the instance.

Clauses. The clauses appear immediately after the problem line. The variables are assumed to
be numbered from 1 up to n. It is not necessary that every variable appears in the instance.
Each clause is represented by a sequence of numbers separated by either a space, tab, or new-line
character. The non-negated version of a variable j is represented by j; the negated version is
represented by −j. Each clause is terminated by the value 0. Unlike many formats that represent
the end of a clause by a new-line character, this format allows clauses to be on multiple lines.

Example. Below here is an example of the data file in DIMACS format corresponding to the
CNF-SAT problem (1.2).

c sample.cnf

c

c This is an example of the CNF-SAT problem data

c in DIMACS format.

c

p cnf 4 3

1 2 0

-4 3

-2 0

-1 4 0

c

c eof

1This material is based on the paper “Satisfiability Suggested Format”, which is publicly available at
http://dimacs.rutgers.edu/.

3

2.2 glp check cnfsat — check for CNF-SAT problem instance

Synopsis

int glp_check_cnfsat(glp_prob *P);

Description

The routine glp_check_cnfsat checks if the specified problem object P contains a 0-1 pro-
gramming problem instance in the format (1.5)–(1.6) and therefore encodes a CNF-SAT problem
instance.

Returns

If the specified problem object has the format (1.5)–(1.6), the routine returns zero, otherwise
non-zero.

2.3 glp write cnfsat — write CNF-SAT problem data in DIMACS format

Synopsis

int glp_write_cnfsat(glp_prob *P, const char *fname);

Description

The routine glp_write_cnfsat automatically translates the specified 0-1 programming problem
instance (1.5)–(1.6) to a CNF-SAT problem instance and writes the problem data to a text file in
DIMACS format.

The parameter P is the problem object, which should specify a 0-1 programming problem in-
stance in the format (1.5)–(1.6).

The character string fname specifies a name of the output text file to be written. (If the file
name ends with suffix ‘.gz’, the file is assumed to be compressed, in which case the routine performs
automatic compression on writing that file.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

2.4 glp minisat1 — solve CNF-SAT problem instance with MiniSat solver

Synopsis

int glp_minisat1(glp_prob *P);

Description

The routine glp_minisat1 is a driver to MiniSat, a CNF-SAT solver developed by Niklas Eén
and Niklas Sörensson, Chalmers University of Technology, Sweden.2

2The MiniSat software module is not part of GLPK, but is used with GLPK and included in the distribution.

4

It is assumed that the specified problem object P contains a 0-1 programming problem instance
in the format (1.5)–(1.6) and therefore encodes a CNF-SAT problem instance.

If the problem instance has been successfully solved to the end, the routine glp_minisat1

returns 0. In this case the routine glp_mip_status can be used to determine the solution status:

— GLP OPT means that the solver found an integer feasible solution and therefore the corresponding
CNF-SAT instance is satisfiable;

— GLP NOFEAS means that no integer feasible solution exists and therefore the corresponding CNF-
SAT instance is unsatisfiable.

If an integer feasible solution was found, corresponding values of binary variables can be retrieved
with the routine glp_mip_col_val.

Returns

0 The MIP problem instance has been successfully solved. (This code does not nec-
essarily mean that the solver has found feasible solution. It only means that the
solution process was successful.)

GLP EDATA The specified problem object contains a MIP instance which does not have the
format (1.5)–(1.6).

GLP EFAIL The solution process was unsuccessful because of the solver failure.

2.5 glp intfeas1 — solve integer feasibility problem

Synopsis

int glp_intfeas1(glp_prob *P, int use_bound, int obj_bound);

Description

The routine glp_intfeas1 is a tentative implementation of an integer feasibility solver based
on a CNF-SAT solver (currently it is MiniSat; see Subsection 2.4).

If the parameter use_bound is zero, the routine searches for any integer feasibile solution to the
specified integer programming problem. Note that in this case the objective function is ignored.

If the parameter use_bound is non-zero, the routine searches for an integer feasible solution,
which provides a value of the objective function not worse than obj_bound. In other word, the
parameter obj_bound specifies an upper (in case of minimization) or lower (in case of maximization)
bound to the objective function.

If the specified problem has been successfully solved to the end, the routine glp_intfeas1

returns 0. In this case the routine glp_mip_status can be used to determine the solution status:

— GLP FEAS means that the solver found an integer feasible solution;

— GLP NOFEAS means that the problem has no integer feasible solution (if use bound is zero) or it
has no integer feasible solution, which is not worse than obj bound (if use bound is non-zero).

5

If an integer feasible solution was found, corresponding values of variables (columns) can be
retrieved with the routine glp_mip_col_val.

Usage Notes

The integer programming problem specified by the parameter P should satisfy to the following
requirements:

1. All variables (columns) should be either binary (GLP BV) or fixed at integer values (GLP FX).

2. All constraint and objective coefficients should be integer numbers in the range
[−231, +231 − 1].

Though there are no special requirements to the constraints, currently the routine glp_intfeas1
is efficient mainly for problems, where most constraints (rows) fall into the following three classes:

1. Covering inequalities ∑
j

tj ≥ 1,

where tj = xj or tj = 1− xj , xj is a binary variable.

2. Packing inequalities ∑
j

tj ≤ 1.

3. Partitioning equalities (SOS1 constraints)∑
j

tj = 1.

Returns

0 The problem has been successfully solved. (This code does not necessarily mean that
the solver has found an integer feasible solution. It only means that the solution
process was successful.)

GLP EDATA The specified problem object does not satisfy to the requirements listed in Paragraph
‘Usage Notes’.

GLP ERANGE An integer overflow occured on translating the specified problem to a CNF-SAT
problem.

GLP EFAIL The solution process was unsuccessful because of the solver failure.

6

