/* Copyright 2005-2013 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef __TBB_parallel_do_H #define __TBB_parallel_do_H #include "task.h" #include "aligned_space.h" #include namespace tbb { //! @cond INTERNAL namespace internal { template class parallel_do_feeder_impl; template class do_group_task; //! Strips its template type argument from 'cv' and '&' qualifiers template struct strip { typedef T type; }; template struct strip { typedef T type; }; template struct strip { typedef T type; }; template struct strip { typedef T type; }; template struct strip { typedef T type; }; // Most of the compilers remove cv-qualifiers from non-reference function argument types. // But unfortunately there are those that don't. template struct strip { typedef T type; }; template struct strip { typedef T type; }; template struct strip { typedef T type; }; } // namespace internal //! @endcond //! Class the user supplied algorithm body uses to add new tasks /** \param Item Work item type **/ template class parallel_do_feeder: internal::no_copy { parallel_do_feeder() {} virtual ~parallel_do_feeder () {} virtual void internal_add( const Item& item ) = 0; template friend class internal::parallel_do_feeder_impl; public: //! Add a work item to a running parallel_do. void add( const Item& item ) {internal_add(item);} }; //! @cond INTERNAL namespace internal { //! For internal use only. /** Selects one of the two possible forms of function call member operator. @ingroup algorithms **/ template class parallel_do_operator_selector { typedef parallel_do_feeder Feeder; template static void internal_call( const Body& obj, A1& arg1, A2&, void (Body::*)(CvItem) const ) { obj(arg1); } template static void internal_call( const Body& obj, A1& arg1, A2& arg2, void (Body::*)(CvItem, parallel_do_feeder&) const ) { obj(arg1, arg2); } public: template static void call( const Body& obj, A1& arg1, A2& arg2 ) { internal_call( obj, arg1, arg2, &Body::operator() ); } }; //! For internal use only. /** Executes one iteration of a do. @ingroup algorithms */ template class do_iteration_task: public task { typedef parallel_do_feeder_impl feeder_type; Item my_value; feeder_type& my_feeder; do_iteration_task( const Item& value, feeder_type& feeder ) : my_value(value), my_feeder(feeder) {} /*override*/ task* execute() { parallel_do_operator_selector::call(*my_feeder.my_body, my_value, my_feeder); return NULL; } template friend class parallel_do_feeder_impl; }; // class do_iteration_task template class do_iteration_task_iter: public task { typedef parallel_do_feeder_impl feeder_type; Iterator my_iter; feeder_type& my_feeder; do_iteration_task_iter( const Iterator& iter, feeder_type& feeder ) : my_iter(iter), my_feeder(feeder) {} /*override*/ task* execute() { parallel_do_operator_selector::call(*my_feeder.my_body, *my_iter, my_feeder); return NULL; } template friend class do_group_task_forward; template friend class do_group_task_input; template friend class do_task_iter; }; // class do_iteration_task_iter //! For internal use only. /** Implements new task adding procedure. @ingroup algorithms **/ template class parallel_do_feeder_impl : public parallel_do_feeder { /*override*/ void internal_add( const Item& item ) { typedef do_iteration_task iteration_type; iteration_type& t = *new (task::allocate_additional_child_of(*my_barrier)) iteration_type(item, *this); t.spawn( t ); } public: const Body* my_body; empty_task* my_barrier; parallel_do_feeder_impl() { my_barrier = new( task::allocate_root() ) empty_task(); __TBB_ASSERT(my_barrier, "root task allocation failed"); } #if __TBB_TASK_GROUP_CONTEXT parallel_do_feeder_impl(tbb::task_group_context &context) { my_barrier = new( task::allocate_root(context) ) empty_task(); __TBB_ASSERT(my_barrier, "root task allocation failed"); } #endif ~parallel_do_feeder_impl() { my_barrier->destroy(*my_barrier); } }; // class parallel_do_feeder_impl //! For internal use only /** Unpacks a block of iterations. @ingroup algorithms */ template class do_group_task_forward: public task { static const size_t max_arg_size = 4; typedef parallel_do_feeder_impl feeder_type; feeder_type& my_feeder; Iterator my_first; size_t my_size; do_group_task_forward( Iterator first, size_t size, feeder_type& feeder ) : my_feeder(feeder), my_first(first), my_size(size) {} /*override*/ task* execute() { typedef do_iteration_task_iter iteration_type; __TBB_ASSERT( my_size>0, NULL ); task_list list; task* t; size_t k=0; for(;;) { t = new( allocate_child() ) iteration_type( my_first, my_feeder ); ++my_first; if( ++k==my_size ) break; list.push_back(*t); } set_ref_count(int(k+1)); spawn(list); spawn_and_wait_for_all(*t); return NULL; } template friend class do_task_iter; }; // class do_group_task_forward template class do_group_task_input: public task { static const size_t max_arg_size = 4; typedef parallel_do_feeder_impl feeder_type; feeder_type& my_feeder; size_t my_size; aligned_space my_arg; do_group_task_input( feeder_type& feeder ) : my_feeder(feeder), my_size(0) {} /*override*/ task* execute() { typedef do_iteration_task_iter iteration_type; __TBB_ASSERT( my_size>0, NULL ); task_list list; task* t; size_t k=0; for(;;) { t = new( allocate_child() ) iteration_type( my_arg.begin() + k, my_feeder ); if( ++k==my_size ) break; list.push_back(*t); } set_ref_count(int(k+1)); spawn(list); spawn_and_wait_for_all(*t); return NULL; } ~do_group_task_input(){ for( size_t k=0; k~Item(); } template friend class do_task_iter; }; // class do_group_task_input //! For internal use only. /** Gets block of iterations and packages them into a do_group_task. @ingroup algorithms */ template class do_task_iter: public task { typedef parallel_do_feeder_impl feeder_type; public: do_task_iter( Iterator first, Iterator last , feeder_type& feeder ) : my_first(first), my_last(last), my_feeder(feeder) {} private: Iterator my_first; Iterator my_last; feeder_type& my_feeder; /* Do not merge run(xxx) and run_xxx() methods. They are separated in order to make sure that compilers will eliminate unused argument of type xxx (that is will not put it on stack). The sole purpose of this argument is overload resolution. An alternative could be using template functions, but explicit specialization of member function templates is not supported for non specialized class templates. Besides template functions would always fall back to the least efficient variant (the one for input iterators) in case of iterators having custom tags derived from basic ones. */ /*override*/ task* execute() { typedef typename std::iterator_traits::iterator_category iterator_tag; return run( (iterator_tag*)NULL ); } /** This is the most restricted variant that operates on input iterators or iterators with unknown tags (tags not derived from the standard ones). **/ inline task* run( void* ) { return run_for_input_iterator(); } task* run_for_input_iterator() { typedef do_group_task_input block_type; block_type& t = *new( allocate_additional_child_of(*my_feeder.my_barrier) ) block_type(my_feeder); size_t k=0; while( !(my_first == my_last) ) { new (t.my_arg.begin() + k) Item(*my_first); ++my_first; if( ++k==block_type::max_arg_size ) { if ( !(my_first == my_last) ) recycle_to_reexecute(); break; } } if( k==0 ) { destroy(t); return NULL; } else { t.my_size = k; return &t; } } inline task* run( std::forward_iterator_tag* ) { return run_for_forward_iterator(); } task* run_for_forward_iterator() { typedef do_group_task_forward block_type; Iterator first = my_first; size_t k=0; while( !(my_first==my_last) ) { ++my_first; if( ++k==block_type::max_arg_size ) { if ( !(my_first==my_last) ) recycle_to_reexecute(); break; } } return k==0 ? NULL : new( allocate_additional_child_of(*my_feeder.my_barrier) ) block_type(first, k, my_feeder); } inline task* run( std::random_access_iterator_tag* ) { return run_for_random_access_iterator(); } task* run_for_random_access_iterator() { typedef do_group_task_forward block_type; typedef do_iteration_task_iter iteration_type; size_t k = static_cast(my_last-my_first); if( k > block_type::max_arg_size ) { Iterator middle = my_first + k/2; empty_task& c = *new( allocate_continuation() ) empty_task; do_task_iter& b = *new( c.allocate_child() ) do_task_iter(middle, my_last, my_feeder); recycle_as_child_of(c); my_last = middle; c.set_ref_count(2); c.spawn(b); return this; }else if( k != 0 ) { task_list list; task* t; size_t k1=0; for(;;) { t = new( allocate_child() ) iteration_type(my_first, my_feeder); ++my_first; if( ++k1==k ) break; list.push_back(*t); } set_ref_count(int(k+1)); spawn(list); spawn_and_wait_for_all(*t); } return NULL; } }; // class do_task_iter //! For internal use only. /** Implements parallel iteration over a range. @ingroup algorithms */ template void run_parallel_do( Iterator first, Iterator last, const Body& body #if __TBB_TASK_GROUP_CONTEXT , task_group_context& context #endif ) { typedef do_task_iter root_iteration_task; #if __TBB_TASK_GROUP_CONTEXT parallel_do_feeder_impl feeder(context); #else parallel_do_feeder_impl feeder; #endif feeder.my_body = &body; root_iteration_task &t = *new( feeder.my_barrier->allocate_child() ) root_iteration_task(first, last, feeder); feeder.my_barrier->set_ref_count(2); feeder.my_barrier->spawn_and_wait_for_all(t); } //! For internal use only. /** Detects types of Body's operator function arguments. @ingroup algorithms **/ template void select_parallel_do( Iterator first, Iterator last, const Body& body, void (Body::*)(Item) const #if __TBB_TASK_GROUP_CONTEXT , task_group_context& context #endif // __TBB_TASK_GROUP_CONTEXT ) { run_parallel_do::type>( first, last, body #if __TBB_TASK_GROUP_CONTEXT , context #endif // __TBB_TASK_GROUP_CONTEXT ); } //! For internal use only. /** Detects types of Body's operator function arguments. @ingroup algorithms **/ template void select_parallel_do( Iterator first, Iterator last, const Body& body, void (Body::*)(Item, parallel_do_feeder<_Item>&) const #if __TBB_TASK_GROUP_CONTEXT , task_group_context& context #endif // __TBB_TASK_GROUP_CONTEXT ) { run_parallel_do::type>( first, last, body #if __TBB_TASK_GROUP_CONTEXT , context #endif // __TBB_TASK_GROUP_CONTEXT ); } } // namespace internal //! @endcond /** \page parallel_do_body_req Requirements on parallel_do body Class \c Body implementing the concept of parallel_do body must define: - \code B::operator()( cv_item_type item, parallel_do_feeder& feeder ) const OR B::operator()( cv_item_type& item ) const \endcode Process item. May be invoked concurrently for the same \c this but different \c item. - \code item_type( const item_type& ) \endcode Copy a work item. - \code ~item_type() \endcode Destroy a work item **/ /** \name parallel_do See also requirements on \ref parallel_do_body_req "parallel_do Body". **/ //@{ //! Parallel iteration over a range, with optional addition of more work. /** @ingroup algorithms */ template void parallel_do( Iterator first, Iterator last, const Body& body ) { if ( first == last ) return; #if __TBB_TASK_GROUP_CONTEXT task_group_context context; #endif // __TBB_TASK_GROUP_CONTEXT internal::select_parallel_do( first, last, body, &Body::operator() #if __TBB_TASK_GROUP_CONTEXT , context #endif // __TBB_TASK_GROUP_CONTEXT ); } #if __TBB_TASK_GROUP_CONTEXT //! Parallel iteration over a range, with optional addition of more work and user-supplied context /** @ingroup algorithms */ template void parallel_do( Iterator first, Iterator last, const Body& body, task_group_context& context ) { if ( first == last ) return; internal::select_parallel_do( first, last, body, &Body::operator(), context ); } #endif // __TBB_TASK_GROUP_CONTEXT //@} } // namespace #endif /* __TBB_parallel_do_H */