/* Copyright 2005-2013 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef __TBB_flow_graph_H #define __TBB_flow_graph_H #include "tbb_stddef.h" #include "atomic.h" #include "spin_mutex.h" #include "null_mutex.h" #include "spin_rw_mutex.h" #include "null_rw_mutex.h" #include "task.h" #include "concurrent_vector.h" #include "internal/_aggregator_impl.h" // use the VC10 or gcc version of tuple if it is available. #if __TBB_CPP11_TUPLE_PRESENT #include namespace tbb { namespace flow { using std::tuple; using std::tuple_size; using std::tuple_element; using std::get; } } #else #include "compat/tuple" #endif #include #include /** @file \brief The graph related classes and functions There are some applications that best express dependencies as messages passed between nodes in a graph. These messages may contain data or simply act as signals that a predecessors has completed. The graph class and its associated node classes can be used to express such applcations. */ namespace tbb { namespace flow { //! An enumeration the provides the two most common concurrency levels: unlimited and serial enum concurrency { unlimited = 0, serial = 1 }; namespace interface6 { namespace internal { template class successor_cache; template class broadcast_cache; template class round_robin_cache; } //! An empty class used for messages that mean "I'm done" class continue_msg {}; template< typename T > class sender; template< typename T > class receiver; class continue_receiver; //! Pure virtual template class that defines a sender of messages of type T template< typename T > class sender { public: //! The output type of this sender typedef T output_type; //! The successor type for this node typedef receiver successor_type; virtual ~sender() {} //! Add a new successor to this node virtual bool register_successor( successor_type &r ) = 0; //! Removes a successor from this node virtual bool remove_successor( successor_type &r ) = 0; //! Request an item from the sender virtual bool try_get( T & ) { return false; } //! Reserves an item in the sender virtual bool try_reserve( T & ) { return false; } //! Releases the reserved item virtual bool try_release( ) { return false; } //! Consumes the reserved item virtual bool try_consume( ) { return false; } }; template< typename T > class limiter_node; // needed for resetting decrementer template< typename R, typename B > class run_and_put_task; static tbb::task * const SUCCESSFULLY_ENQUEUED = (task *)-1; // enqueue left task if necessary. Returns the non-enqueued task if there is one. static inline tbb::task *combine_tasks( tbb::task * left, tbb::task * right) { // if no RHS task, don't change left. if(right == NULL) return left; // right != NULL if(left == NULL) return right; if(left == SUCCESSFULLY_ENQUEUED) return right; // left contains a task if(right != SUCCESSFULLY_ENQUEUED) { // both are valid tasks tbb::task::enqueue(*left); return right; } return left; } //! Pure virtual template class that defines a receiver of messages of type T template< typename T > class receiver { public: //! The input type of this receiver typedef T input_type; //! The predecessor type for this node typedef sender predecessor_type; //! Destructor virtual ~receiver() {} //! Put an item to the receiver bool try_put( const T& t ) { task *res = try_put_task(t); if(!res) return false; if (res != SUCCESSFULLY_ENQUEUED) task::enqueue(*res); return true; } //! put item to successor; return task to run the successor if possible. protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; virtual task *try_put_task(const T& t) = 0; public: //! Add a predecessor to the node virtual bool register_predecessor( predecessor_type & ) { return false; } //! Remove a predecessor from the node virtual bool remove_predecessor( predecessor_type & ) { return false; } protected: //! put receiver back in initial state template friend class limiter_node; virtual void reset_receiver() = 0; template friend class internal::successor_cache; virtual bool is_continue_receiver() { return false; } }; //! Base class for receivers of completion messages /** These receivers automatically reset, but cannot be explicitly waited on */ class continue_receiver : public receiver< continue_msg > { public: //! The input type typedef continue_msg input_type; //! The predecessor type for this node typedef sender< continue_msg > predecessor_type; //! Constructor continue_receiver( int number_of_predecessors = 0 ) { my_predecessor_count = my_initial_predecessor_count = number_of_predecessors; my_current_count = 0; } //! Copy constructor continue_receiver( const continue_receiver& src ) : receiver() { my_predecessor_count = my_initial_predecessor_count = src.my_initial_predecessor_count; my_current_count = 0; } //! Destructor virtual ~continue_receiver() { } //! Increments the trigger threshold /* override */ bool register_predecessor( predecessor_type & ) { spin_mutex::scoped_lock l(my_mutex); ++my_predecessor_count; return true; } //! Decrements the trigger threshold /** Does not check to see if the removal of the predecessor now makes the current count exceed the new threshold. So removing a predecessor while the graph is active can cause unexpected results. */ /* override */ bool remove_predecessor( predecessor_type & ) { spin_mutex::scoped_lock l(my_mutex); --my_predecessor_count; return true; } protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; // execute body is supposed to be too small to create a task for. /* override */ task *try_put_task( const input_type & ) { { spin_mutex::scoped_lock l(my_mutex); if ( ++my_current_count < my_predecessor_count ) return SUCCESSFULLY_ENQUEUED; else my_current_count = 0; } task * res = execute(); if(!res) return SUCCESSFULLY_ENQUEUED; return res; } spin_mutex my_mutex; int my_predecessor_count; int my_current_count; int my_initial_predecessor_count; // the friend declaration in the base class did not eliminate the "protected class" // error in gcc 4.1.2 template friend class limiter_node; /*override*/void reset_receiver() { my_current_count = 0; } //! Does whatever should happen when the threshold is reached /** This should be very fast or else spawn a task. This is called while the sender is blocked in the try_put(). */ virtual task * execute() = 0; template friend class internal::successor_cache; /*override*/ bool is_continue_receiver() { return true; } }; #include "internal/_flow_graph_impl.h" using namespace internal::graph_policy_namespace; class graph; class graph_node; template class graph_iterator { friend class graph; friend class graph_node; public: typedef size_t size_type; typedef GraphNodeType value_type; typedef GraphNodeType* pointer; typedef GraphNodeType& reference; typedef const GraphNodeType& const_reference; typedef std::forward_iterator_tag iterator_category; //! Default constructor graph_iterator() : my_graph(NULL), current_node(NULL) {} //! Copy constructor graph_iterator(const graph_iterator& other) : my_graph(other.my_graph), current_node(other.current_node) {} //! Assignment graph_iterator& operator=(const graph_iterator& other) { if (this != &other) { my_graph = other.my_graph; current_node = other.current_node; } return *this; } //! Dereference reference operator*() const; //! Dereference pointer operator->() const; //! Equality bool operator==(const graph_iterator& other) const { return ((my_graph == other.my_graph) && (current_node == other.current_node)); } //! Inequality bool operator!=(const graph_iterator& other) const { return !(operator==(other)); } //! Pre-increment graph_iterator& operator++() { internal_forward(); return *this; } //! Post-increment graph_iterator operator++(int) { graph_iterator result = *this; operator++(); return result; } private: // the graph over which we are iterating GraphContainerType *my_graph; // pointer into my_graph's my_nodes list pointer current_node; //! Private initializing constructor for begin() and end() iterators graph_iterator(GraphContainerType *g, bool begin); void internal_forward(); }; //! The graph class /** This class serves as a handle to the graph */ class graph : tbb::internal::no_copy { friend class graph_node; template< typename Body > class run_task : public task { public: run_task( Body& body ) : my_body(body) {} task *execute() { my_body(); return NULL; } private: Body my_body; }; template< typename Receiver, typename Body > class run_and_put_task : public task { public: run_and_put_task( Receiver &r, Body& body ) : my_receiver(r), my_body(body) {} task *execute() { task *res = my_receiver.try_put_task( my_body() ); if(res == SUCCESSFULLY_ENQUEUED) res = NULL; return res; } private: Receiver &my_receiver; Body my_body; }; public: //! Constructs a graph with isolated task_group_context explicit graph() : my_nodes(NULL), my_nodes_last(NULL) { own_context = true; cancelled = false; caught_exception = false; my_context = new task_group_context(); my_root_task = ( new ( task::allocate_root(*my_context) ) empty_task ); my_root_task->set_ref_count(1); } //! Constructs a graph with use_this_context as context explicit graph(task_group_context& use_this_context) : my_context(&use_this_context), my_nodes(NULL), my_nodes_last(NULL) { own_context = false; my_root_task = ( new ( task::allocate_root(*my_context) ) empty_task ); my_root_task->set_ref_count(1); } //! Destroys the graph. /** Calls wait_for_all, then destroys the root task and context. */ ~graph() { wait_for_all(); my_root_task->set_ref_count(0); task::destroy( *my_root_task ); if (own_context) delete my_context; } //! Used to register that an external entity may still interact with the graph. /** The graph will not return from wait_for_all until a matching number of decrement_wait_count calls is made. */ void increment_wait_count() { if (my_root_task) my_root_task->increment_ref_count(); } //! Deregisters an external entity that may have interacted with the graph. /** The graph will not return from wait_for_all until all the number of decrement_wait_count calls matches the number of increment_wait_count calls. */ void decrement_wait_count() { if (my_root_task) my_root_task->decrement_ref_count(); } //! Spawns a task that runs a body and puts its output to a specific receiver /** The task is spawned as a child of the graph. This is useful for running tasks that need to block a wait_for_all() on the graph. For example a one-off source. */ template< typename Receiver, typename Body > void run( Receiver &r, Body body ) { task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) ) run_and_put_task< Receiver, Body >( r, body ) ); } //! Spawns a task that runs a function object /** The task is spawned as a child of the graph. This is useful for running tasks that need to block a wait_for_all() on the graph. For example a one-off source. */ template< typename Body > void run( Body body ) { task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) ) run_task< Body >( body ) ); } //! Wait until graph is idle and decrement_wait_count calls equals increment_wait_count calls. /** The waiting thread will go off and steal work while it is block in the wait_for_all. */ void wait_for_all() { cancelled = false; caught_exception = false; if (my_root_task) { #if TBB_USE_EXCEPTIONS try { #endif my_root_task->wait_for_all(); cancelled = my_context->is_group_execution_cancelled(); #if TBB_USE_EXCEPTIONS } catch(...) { my_root_task->set_ref_count(1); my_context->reset(); caught_exception = true; cancelled = true; throw; } #endif my_context->reset(); // consistent with behavior in catch() my_root_task->set_ref_count(1); } } //! Returns the root task of the graph task * root_task() { return my_root_task; } // ITERATORS template friend class graph_iterator; // Graph iterator typedefs typedef graph_iterator iterator; typedef graph_iterator const_iterator; // Graph iterator constructors //! start iterator iterator begin() { return iterator(this, true); } //! end iterator iterator end() { return iterator(this, false); } //! start const iterator const_iterator begin() const { return const_iterator(this, true); } //! end const iterator const_iterator end() const { return const_iterator(this, false); } //! start const iterator const_iterator cbegin() const { return const_iterator(this, true); } //! end const iterator const_iterator cend() const { return const_iterator(this, false); } //! return status of graph execution bool is_cancelled() { return cancelled; } bool exception_thrown() { return caught_exception; } // un-thread-safe state reset. void reset(); private: task *my_root_task; task_group_context *my_context; bool own_context; bool cancelled; bool caught_exception; graph_node *my_nodes, *my_nodes_last; spin_mutex nodelist_mutex; void register_node(graph_node *n); void remove_node(graph_node *n); }; template graph_iterator::graph_iterator(C *g, bool begin) : my_graph(g), current_node(NULL) { if (begin) current_node = my_graph->my_nodes; //else it is an end iterator by default } template typename graph_iterator::reference graph_iterator::operator*() const { __TBB_ASSERT(current_node, "graph_iterator at end"); return *operator->(); } template typename graph_iterator::pointer graph_iterator::operator->() const { return current_node; } template void graph_iterator::internal_forward() { if (current_node) current_node = current_node->next; } //! The base of all graph nodes. class graph_node : tbb::internal::no_assign { friend class graph; template friend class graph_iterator; protected: graph& my_graph; graph_node *next, *prev; public: graph_node(graph& g) : my_graph(g) { my_graph.register_node(this); } virtual ~graph_node() { my_graph.remove_node(this); } protected: virtual void reset() = 0; }; inline void graph::register_node(graph_node *n) { n->next = NULL; { spin_mutex::scoped_lock lock(nodelist_mutex); n->prev = my_nodes_last; if (my_nodes_last) my_nodes_last->next = n; my_nodes_last = n; if (!my_nodes) my_nodes = n; } } inline void graph::remove_node(graph_node *n) { { spin_mutex::scoped_lock lock(nodelist_mutex); __TBB_ASSERT(my_nodes && my_nodes_last, "graph::remove_node: Error: no registered nodes"); if (n->prev) n->prev->next = n->next; if (n->next) n->next->prev = n->prev; if (my_nodes_last == n) my_nodes_last = n->prev; if (my_nodes == n) my_nodes = n->next; } n->prev = n->next = NULL; } inline void graph::reset() { // reset context if(my_context) my_context->reset(); cancelled = false; caught_exception = false; // reset all the nodes comprising the graph for(iterator ii = begin(); ii != end(); ++ii) { graph_node *my_p = &(*ii); my_p->reset(); } } #include "internal/_flow_graph_node_impl.h" //! An executable node that acts as a source, i.e. it has no predecessors template < typename Output > class source_node : public graph_node, public sender< Output > { protected: using graph_node::my_graph; public: //! The type of the output message, which is complete typedef Output output_type; //! The type of successors of this node typedef receiver< Output > successor_type; //! Constructor for a node with a successor template< typename Body > source_node( graph &g, Body body, bool is_active = true ) : graph_node(g), my_root_task(g.root_task()), my_active(is_active), init_my_active(is_active), my_body( new internal::source_body_leaf< output_type, Body>(body) ), my_reserved(false), my_has_cached_item(false) { my_successors.set_owner(this); } //! Copy constructor source_node( const source_node& src ) : graph_node(src.my_graph), sender(), my_root_task( src.my_root_task), my_active(src.init_my_active), init_my_active(src.init_my_active), my_body( src.my_body->clone() ), my_reserved(false), my_has_cached_item(false) { my_successors.set_owner(this); } //! The destructor ~source_node() { delete my_body; } //! Add a new successor to this node /* override */ bool register_successor( receiver &r ) { spin_mutex::scoped_lock lock(my_mutex); my_successors.register_successor(r); if ( my_active ) spawn_put(); return true; } //! Removes a successor from this node /* override */ bool remove_successor( receiver &r ) { spin_mutex::scoped_lock lock(my_mutex); my_successors.remove_successor(r); return true; } //! Request an item from the node /*override */ bool try_get( output_type &v ) { spin_mutex::scoped_lock lock(my_mutex); if ( my_reserved ) return false; if ( my_has_cached_item ) { v = my_cached_item; my_has_cached_item = false; return true; } // we've been asked to provide an item, but we have none. enqueue a task to // provide one. spawn_put(); return false; } //! Reserves an item. /* override */ bool try_reserve( output_type &v ) { spin_mutex::scoped_lock lock(my_mutex); if ( my_reserved ) { return false; } if ( my_has_cached_item ) { v = my_cached_item; my_reserved = true; return true; } else { return false; } } //! Release a reserved item. /** true = item has been released and so remains in sender, dest must request or reserve future items */ /* override */ bool try_release( ) { spin_mutex::scoped_lock lock(my_mutex); __TBB_ASSERT( my_reserved && my_has_cached_item, "releasing non-existent reservation" ); my_reserved = false; if(!my_successors.empty()) spawn_put(); return true; } //! Consumes a reserved item /* override */ bool try_consume( ) { spin_mutex::scoped_lock lock(my_mutex); __TBB_ASSERT( my_reserved && my_has_cached_item, "consuming non-existent reservation" ); my_reserved = false; my_has_cached_item = false; if ( !my_successors.empty() ) { spawn_put(); } return true; } //! Activates a node that was created in the inactive state void activate() { spin_mutex::scoped_lock lock(my_mutex); my_active = true; if ( !my_successors.empty() ) spawn_put(); } template Body copy_function_object() { internal::source_body &body_ref = *this->my_body; return dynamic_cast< internal::source_body_leaf & >(body_ref).get_body(); } protected: //! resets the node to its initial state void reset() { my_active = init_my_active; my_reserved =false; if(my_has_cached_item) { my_has_cached_item = false; } } private: task *my_root_task; spin_mutex my_mutex; bool my_active; bool init_my_active; internal::source_body *my_body; internal::broadcast_cache< output_type > my_successors; bool my_reserved; bool my_has_cached_item; output_type my_cached_item; // used by apply_body, can invoke body of node. bool try_reserve_apply_body(output_type &v) { spin_mutex::scoped_lock lock(my_mutex); if ( my_reserved ) { return false; } if ( !my_has_cached_item && (*my_body)(my_cached_item) ) my_has_cached_item = true; if ( my_has_cached_item ) { v = my_cached_item; my_reserved = true; return true; } else { return false; } } //! Spawns a task that applies the body /* override */ void spawn_put( ) { task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) ) internal:: source_task_bypass < source_node< output_type > >( *this ) ); } friend class internal::source_task_bypass< source_node< output_type > >; //! Applies the body. Returning SUCCESSFULLY_ENQUEUED okay; forward_task_bypass will handle it. /* override */ task * apply_body_bypass( ) { output_type v; if ( !try_reserve_apply_body(v) ) return NULL; task *last_task = my_successors.try_put_task(v); if ( last_task ) try_consume(); else try_release(); return last_task; } }; // source_node //! Implements a function node that supports Input -> Output template < typename Input, typename Output = continue_msg, graph_buffer_policy = queueing, typename Allocator=cache_aligned_allocator > class function_node : public graph_node, public internal::function_input, public internal::function_output { protected: using graph_node::my_graph; public: typedef Input input_type; typedef Output output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; typedef internal::function_input fInput_type; typedef internal::function_output fOutput_type; //! Constructor template< typename Body > function_node( graph &g, size_t concurrency, Body body ) : graph_node(g), internal::function_input(g, concurrency, body) {} //! Copy constructor function_node( const function_node& src ) : graph_node(src.my_graph), internal::function_input( src ), fOutput_type() {} protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; using fInput_type::try_put_task; // override of graph_node's reset. /*override*/void reset() {fInput_type::reset_function_input(); } /* override */ internal::broadcast_cache &successors () { return fOutput_type::my_successors; } }; //! Implements a function node that supports Input -> Output template < typename Input, typename Output, typename Allocator > class function_node : public graph_node, public internal::function_input, public internal::function_output { protected: using graph_node::my_graph; public: typedef Input input_type; typedef Output output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; typedef internal::function_input fInput_type; typedef internal::function_input_queue queue_type; typedef internal::function_output fOutput_type; //! Constructor template< typename Body > function_node( graph &g, size_t concurrency, Body body ) : graph_node(g), fInput_type( g, concurrency, body, new queue_type() ) {} //! Copy constructor function_node( const function_node& src ) : graph_node(src.my_graph), fInput_type( src, new queue_type() ), fOutput_type() {} protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; using fInput_type::try_put_task; /*override*/void reset() { fInput_type::reset_function_input(); } /* override */ internal::broadcast_cache &successors () { return fOutput_type::my_successors; } }; #include "tbb/internal/_flow_graph_types_impl.h" //! implements a function node that supports Input -> (set of outputs) // Output is a tuple of output types. template < typename Input, typename Output, graph_buffer_policy = queueing, typename Allocator=cache_aligned_allocator > class multifunction_node : public graph_node, public internal::multifunction_input < Input, typename internal::wrap_tuple_elements< tbb::flow::tuple_size::value, // #elements in tuple internal::multifunction_output, // wrap this around each element Output // the tuple providing the types >::type, Allocator > { protected: using graph_node::my_graph; private: static const int N = tbb::flow::tuple_size::value; public: typedef Input input_type; typedef typename internal::wrap_tuple_elements::type output_ports_type; private: typedef typename internal::multifunction_input base_type; typedef typename internal::function_input_queue queue_type; public: template multifunction_node( graph &g, size_t concurrency, Body body ) : graph_node(g), base_type(g,concurrency, body) {} multifunction_node( const multifunction_node &other) : graph_node(other.my_graph), base_type(other) {} // all the guts are in multifunction_input... protected: /*override*/void reset() { base_type::reset(); } }; // multifunction_node template < typename Input, typename Output, typename Allocator > class multifunction_node : public graph_node, public internal::multifunction_input::value, internal::multifunction_output, Output>::type, Allocator> { protected: using graph_node::my_graph; static const int N = tbb::flow::tuple_size::value; public: typedef Input input_type; typedef typename internal::wrap_tuple_elements::type output_ports_type; private: typedef typename internal::multifunction_input base_type; typedef typename internal::function_input_queue queue_type; public: template multifunction_node( graph &g, size_t concurrency, Body body) : graph_node(g), base_type(g,concurrency, body, new queue_type()) {} multifunction_node( const multifunction_node &other) : graph_node(other.my_graph), base_type(other, new queue_type()) {} // all the guts are in multifunction_input... protected: /*override*/void reset() { base_type::reset(); } }; // multifunction_node //! split_node: accepts a tuple as input, forwards each element of the tuple to its // successors. The node has unlimited concurrency, so though it is marked as // "rejecting" it does not reject inputs. template > class split_node : public multifunction_node { static const int N = tbb::flow::tuple_size::value; typedef multifunction_node base_type; public: typedef typename base_type::output_ports_type output_ports_type; private: struct splitting_body { void operator()(const TupleType& t, output_ports_type &p) { internal::emit_element::emit_this(t, p); } }; public: typedef TupleType input_type; typedef Allocator allocator_type; split_node(graph &g) : base_type(g, unlimited, splitting_body()) {} split_node( const split_node & other) : base_type(other) {} }; //! Implements an executable node that supports continue_msg -> Output template class continue_node : public graph_node, public internal::continue_input, public internal::function_output { protected: using graph_node::my_graph; public: typedef continue_msg input_type; typedef Output output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; typedef internal::continue_input fInput_type; typedef internal::function_output fOutput_type; //! Constructor for executable node with continue_msg -> Output template continue_node( graph &g, Body body ) : graph_node(g), internal::continue_input( g, body ) {} //! Constructor for executable node with continue_msg -> Output template continue_node( graph &g, int number_of_predecessors, Body body ) : graph_node(g), internal::continue_input( g, number_of_predecessors, body ) {} //! Copy constructor continue_node( const continue_node& src ) : graph_node(src.my_graph), internal::continue_input(src), internal::function_output() {} protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; using fInput_type::try_put_task; /*override*/void reset() { internal::continue_input::reset_receiver(); } /* override */ internal::broadcast_cache &successors () { return fOutput_type::my_successors; } }; template< typename T > class overwrite_node : public graph_node, public receiver, public sender { protected: using graph_node::my_graph; public: typedef T input_type; typedef T output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; overwrite_node(graph &g) : graph_node(g), my_buffer_is_valid(false) { my_successors.set_owner( this ); } // Copy constructor; doesn't take anything from src; default won't work overwrite_node( const overwrite_node& src ) : graph_node(src.my_graph), receiver(), sender(), my_buffer_is_valid(false) { my_successors.set_owner( this ); } ~overwrite_node() {} /* override */ bool register_successor( successor_type &s ) { spin_mutex::scoped_lock l( my_mutex ); if ( my_buffer_is_valid ) { // We have a valid value that must be forwarded immediately. if ( s.try_put( my_buffer ) || !s.register_predecessor( *this ) ) { // We add the successor: it accepted our put or it rejected it but won't let us become a predecessor my_successors.register_successor( s ); return true; } else { // We don't add the successor: it rejected our put and we became its predecessor instead return false; } } else { // No valid value yet, just add as successor my_successors.register_successor( s ); return true; } } /* override */ bool remove_successor( successor_type &s ) { spin_mutex::scoped_lock l( my_mutex ); my_successors.remove_successor(s); return true; } /* override */ bool try_get( T &v ) { spin_mutex::scoped_lock l( my_mutex ); if ( my_buffer_is_valid ) { v = my_buffer; return true; } else { return false; } } bool is_valid() { spin_mutex::scoped_lock l( my_mutex ); return my_buffer_is_valid; } void clear() { spin_mutex::scoped_lock l( my_mutex ); my_buffer_is_valid = false; } protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; /* override */ task * try_put_task( const T &v ) { spin_mutex::scoped_lock l( my_mutex ); my_buffer = v; my_buffer_is_valid = true; task * rtask = my_successors.try_put_task(v); if(!rtask) rtask = SUCCESSFULLY_ENQUEUED; return rtask; } /*override*/void reset() { my_buffer_is_valid = false; } spin_mutex my_mutex; internal::broadcast_cache< T, null_rw_mutex > my_successors; T my_buffer; bool my_buffer_is_valid; /*override*/void reset_receiver() {} }; template< typename T > class write_once_node : public overwrite_node { public: typedef T input_type; typedef T output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; //! Constructor write_once_node(graph& g) : overwrite_node(g) {} //! Copy constructor: call base class copy constructor write_once_node( const write_once_node& src ) : overwrite_node(src) {} protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; /* override */ task *try_put_task( const T &v ) { spin_mutex::scoped_lock l( this->my_mutex ); if ( this->my_buffer_is_valid ) { return NULL; } else { this->my_buffer = v; this->my_buffer_is_valid = true; task *res = this->my_successors.try_put_task(v); if(!res) res = SUCCESSFULLY_ENQUEUED; return res; } } }; //! Forwards messages of type T to all successors template class broadcast_node : public graph_node, public receiver, public sender { protected: using graph_node::my_graph; private: internal::broadcast_cache my_successors; public: typedef T input_type; typedef T output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; broadcast_node(graph& g) : graph_node(g) { my_successors.set_owner( this ); } // Copy constructor broadcast_node( const broadcast_node& src ) : graph_node(src.my_graph), receiver(), sender() { my_successors.set_owner( this ); } //! Adds a successor virtual bool register_successor( receiver &r ) { my_successors.register_successor( r ); return true; } //! Removes s as a successor virtual bool remove_successor( receiver &r ) { my_successors.remove_successor( r ); return true; } protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; //! build a task to run the successor if possible. Default is old behavior. /*override*/ task *try_put_task(const T& t) { task *new_task = my_successors.try_put_task(t); if(!new_task) new_task = SUCCESSFULLY_ENQUEUED; return new_task; } /*override*/void reset() {} /*override*/void reset_receiver() {} }; // broadcast_node #include "internal/_flow_graph_item_buffer_impl.h" //! Forwards messages in arbitrary order template > class buffer_node : public graph_node, public reservable_item_buffer, public receiver, public sender { protected: using graph_node::my_graph; public: typedef T input_type; typedef T output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; typedef buffer_node my_class; protected: typedef size_t size_type; internal::round_robin_cache< T, null_rw_mutex > my_successors; task *my_parent; friend class internal::forward_task_bypass< buffer_node< T, A > >; enum op_type {reg_succ, rem_succ, req_item, res_item, rel_res, con_res, put_item, try_fwd_task }; enum op_stat {WAIT=0, SUCCEEDED, FAILED}; // implements the aggregator_operation concept class buffer_operation : public internal::aggregated_operation< buffer_operation > { public: char type; T *elem; task * ltask; successor_type *r; buffer_operation(const T& e, op_type t) : type(char(t)), elem(const_cast(&e)) , ltask(NULL) , r(NULL) {} buffer_operation(op_type t) : type(char(t)) , ltask(NULL) , r(NULL) {} }; bool forwarder_busy; typedef internal::aggregating_functor my_handler; friend class internal::aggregating_functor; internal::aggregator< my_handler, buffer_operation> my_aggregator; virtual void handle_operations(buffer_operation *op_list) { buffer_operation *tmp = NULL; bool try_forwarding=false; while (op_list) { tmp = op_list; op_list = op_list->next; switch (tmp->type) { case reg_succ: internal_reg_succ(tmp); try_forwarding = true; break; case rem_succ: internal_rem_succ(tmp); break; case req_item: internal_pop(tmp); break; case res_item: internal_reserve(tmp); break; case rel_res: internal_release(tmp); try_forwarding = true; break; case con_res: internal_consume(tmp); try_forwarding = true; break; case put_item: internal_push(tmp); try_forwarding = true; break; case try_fwd_task: internal_forward_task(tmp); break; } } if (try_forwarding && !forwarder_busy) { forwarder_busy = true; task *new_task = new(task::allocate_additional_child_of(*my_parent)) internal:: forward_task_bypass < buffer_node >(*this); // tmp should point to the last item handled by the aggregator. This is the operation // the handling thread enqueued. So modifying that record will be okay. tbb::task *z = tmp->ltask; tmp->ltask = combine_tasks(z, new_task); // in case the op generated a task } } inline task *grab_forwarding_task( buffer_operation &op_data) { return op_data.ltask; } inline bool enqueue_forwarding_task(buffer_operation &op_data) { task *ft = grab_forwarding_task(op_data); if(ft) { task::enqueue(*ft); return true; } return false; } //! This is executed by an enqueued task, the "forwarder" virtual task *forward_task() { buffer_operation op_data(try_fwd_task); task *last_task = NULL; do { op_data.status = WAIT; op_data.ltask = NULL; my_aggregator.execute(&op_data); tbb::task *xtask = op_data.ltask; last_task = combine_tasks(last_task, xtask); } while (op_data.status == SUCCEEDED); return last_task; } //! Register successor virtual void internal_reg_succ(buffer_operation *op) { my_successors.register_successor(*(op->r)); __TBB_store_with_release(op->status, SUCCEEDED); } //! Remove successor virtual void internal_rem_succ(buffer_operation *op) { my_successors.remove_successor(*(op->r)); __TBB_store_with_release(op->status, SUCCEEDED); } //! Tries to forward valid items to successors virtual void internal_forward_task(buffer_operation *op) { if (this->my_reserved || !this->item_valid(this->my_tail-1)) { __TBB_store_with_release(op->status, FAILED); this->forwarder_busy = false; return; } T i_copy; task * last_task = NULL; size_type counter = my_successors.size(); // Try forwarding, giving each successor a chance while (counter>0 && !this->buffer_empty() && this->item_valid(this->my_tail-1)) { this->fetch_back(i_copy); task *new_task = my_successors.try_put_task(i_copy); last_task = combine_tasks(last_task, new_task); if(new_task) { this->invalidate_back(); --(this->my_tail); } --counter; } op->ltask = last_task; // return task if (last_task && !counter) { __TBB_store_with_release(op->status, SUCCEEDED); } else { __TBB_store_with_release(op->status, FAILED); forwarder_busy = false; } } virtual void internal_push(buffer_operation *op) { this->push_back(*(op->elem)); __TBB_store_with_release(op->status, SUCCEEDED); } virtual void internal_pop(buffer_operation *op) { if(this->pop_back(*(op->elem))) { __TBB_store_with_release(op->status, SUCCEEDED); } else { __TBB_store_with_release(op->status, FAILED); } } virtual void internal_reserve(buffer_operation *op) { if(this->reserve_front(*(op->elem))) { __TBB_store_with_release(op->status, SUCCEEDED); } else { __TBB_store_with_release(op->status, FAILED); } } virtual void internal_consume(buffer_operation *op) { this->consume_front(); __TBB_store_with_release(op->status, SUCCEEDED); } virtual void internal_release(buffer_operation *op) { this->release_front(); __TBB_store_with_release(op->status, SUCCEEDED); } public: //! Constructor buffer_node( graph &g ) : graph_node(g), reservable_item_buffer(), my_parent( g.root_task() ), forwarder_busy(false) { my_successors.set_owner(this); my_aggregator.initialize_handler(my_handler(this)); } //! Copy constructor buffer_node( const buffer_node& src ) : graph_node(src.my_graph), reservable_item_buffer(), receiver(), sender(), my_parent( src.my_parent ) { forwarder_busy = false; my_successors.set_owner(this); my_aggregator.initialize_handler(my_handler(this)); } virtual ~buffer_node() {} // // message sender implementation // //! Adds a new successor. /** Adds successor r to the list of successors; may forward tasks. */ /* override */ bool register_successor( receiver &r ) { buffer_operation op_data(reg_succ); op_data.r = &r; my_aggregator.execute(&op_data); (void)enqueue_forwarding_task(op_data); return true; } //! Removes a successor. /** Removes successor r from the list of successors. It also calls r.remove_predecessor(*this) to remove this node as a predecessor. */ /* override */ bool remove_successor( receiver &r ) { r.remove_predecessor(*this); buffer_operation op_data(rem_succ); op_data.r = &r; my_aggregator.execute(&op_data); // even though this operation does not cause a forward, if we are the handler, and // a forward is scheduled, we may be the first to reach this point after the aggregator, // and so should check for the task. (void)enqueue_forwarding_task(op_data); return true; } //! Request an item from the buffer_node /** true = v contains the returned item
false = no item has been returned */ /* override */ bool try_get( T &v ) { buffer_operation op_data(req_item); op_data.elem = &v; my_aggregator.execute(&op_data); (void)enqueue_forwarding_task(op_data); return (op_data.status==SUCCEEDED); } //! Reserves an item. /** false = no item can be reserved
true = an item is reserved */ /* override */ bool try_reserve( T &v ) { buffer_operation op_data(res_item); op_data.elem = &v; my_aggregator.execute(&op_data); (void)enqueue_forwarding_task(op_data); return (op_data.status==SUCCEEDED); } //! Release a reserved item. /** true = item has been released and so remains in sender */ /* override */ bool try_release() { buffer_operation op_data(rel_res); my_aggregator.execute(&op_data); (void)enqueue_forwarding_task(op_data); return true; } //! Consumes a reserved item. /** true = item is removed from sender and reservation removed */ /* override */ bool try_consume() { buffer_operation op_data(con_res); my_aggregator.execute(&op_data); (void)enqueue_forwarding_task(op_data); return true; } protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; //! receive an item, return a task *if possible /* override */ task *try_put_task(const T &t) { buffer_operation op_data(t, put_item); my_aggregator.execute(&op_data); task *ft = grab_forwarding_task(op_data); if(!ft) { ft = SUCCESSFULLY_ENQUEUED; } return ft; } /*override*/void reset() { reservable_item_buffer::reset(); forwarder_busy = false; } /*override*/void reset_receiver() { // nothing to do; no predecesor_cache } }; // buffer_node //! Forwards messages in FIFO order template > class queue_node : public buffer_node { protected: typedef typename buffer_node::size_type size_type; typedef typename buffer_node::buffer_operation queue_operation; enum op_stat {WAIT=0, SUCCEEDED, FAILED}; /* override */ void internal_forward_task(queue_operation *op) { if (this->my_reserved || !this->item_valid(this->my_head)) { __TBB_store_with_release(op->status, FAILED); this->forwarder_busy = false; return; } T i_copy; task *last_task = NULL; size_type counter = this->my_successors.size(); // Keep trying to send items while there is at least one accepting successor while (counter>0 && this->item_valid(this->my_head)) { this->fetch_front(i_copy); task *new_task = this->my_successors.try_put_task(i_copy); if(new_task) { this->invalidate_front(); ++(this->my_head); last_task = combine_tasks(last_task, new_task); } --counter; } op->ltask = last_task; if (last_task && !counter) __TBB_store_with_release(op->status, SUCCEEDED); else { __TBB_store_with_release(op->status, FAILED); this->forwarder_busy = false; } } /* override */ void internal_pop(queue_operation *op) { if ( this->my_reserved || !this->item_valid(this->my_head)){ __TBB_store_with_release(op->status, FAILED); } else { this->pop_front(*(op->elem)); __TBB_store_with_release(op->status, SUCCEEDED); } } /* override */ void internal_reserve(queue_operation *op) { if (this->my_reserved || !this->item_valid(this->my_head)) { __TBB_store_with_release(op->status, FAILED); } else { this->my_reserved = true; this->fetch_front(*(op->elem)); this->invalidate_front(); __TBB_store_with_release(op->status, SUCCEEDED); } } /* override */ void internal_consume(queue_operation *op) { this->consume_front(); __TBB_store_with_release(op->status, SUCCEEDED); } public: typedef T input_type; typedef T output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; //! Constructor queue_node( graph &g ) : buffer_node(g) {} //! Copy constructor queue_node( const queue_node& src) : buffer_node(src) {} }; //! Forwards messages in sequence order template< typename T, typename A=cache_aligned_allocator > class sequencer_node : public queue_node { internal::function_body< T, size_t > *my_sequencer; public: typedef T input_type; typedef T output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; //! Constructor template< typename Sequencer > sequencer_node( graph &g, const Sequencer& s ) : queue_node(g), my_sequencer(new internal::function_body_leaf< T, size_t, Sequencer>(s) ) {} //! Copy constructor sequencer_node( const sequencer_node& src ) : queue_node(src), my_sequencer( src.my_sequencer->clone() ) {} //! Destructor ~sequencer_node() { delete my_sequencer; } protected: typedef typename buffer_node::size_type size_type; typedef typename buffer_node::buffer_operation sequencer_operation; enum op_stat {WAIT=0, SUCCEEDED, FAILED}; private: /* override */ void internal_push(sequencer_operation *op) { size_type tag = (*my_sequencer)(*(op->elem)); this->my_tail = (tag+1 > this->my_tail) ? tag+1 : this->my_tail; if(this->size() > this->capacity()) this->grow_my_array(this->size()); // tail already has 1 added to it this->item(tag) = std::make_pair( *(op->elem), true ); __TBB_store_with_release(op->status, SUCCEEDED); } }; //! Forwards messages in priority order template< typename T, typename Compare = std::less, typename A=cache_aligned_allocator > class priority_queue_node : public buffer_node { public: typedef T input_type; typedef T output_type; typedef buffer_node base_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; //! Constructor priority_queue_node( graph &g ) : buffer_node(g), mark(0) {} //! Copy constructor priority_queue_node( const priority_queue_node &src ) : buffer_node(src), mark(0) {} protected: /*override*/void reset() { mark = 0; base_type::reset(); } typedef typename buffer_node::size_type size_type; typedef typename buffer_node::item_type item_type; typedef typename buffer_node::buffer_operation prio_operation; enum op_stat {WAIT=0, SUCCEEDED, FAILED}; /* override */ void handle_operations(prio_operation *op_list) { prio_operation *tmp = op_list /*, *pop_list*/ ; bool try_forwarding=false; while (op_list) { tmp = op_list; op_list = op_list->next; switch (tmp->type) { case buffer_node::reg_succ: this->internal_reg_succ(tmp); try_forwarding = true; break; case buffer_node::rem_succ: this->internal_rem_succ(tmp); break; case buffer_node::put_item: internal_push(tmp); try_forwarding = true; break; case buffer_node::try_fwd_task: internal_forward_task(tmp); break; case buffer_node::rel_res: internal_release(tmp); try_forwarding = true; break; case buffer_node::con_res: internal_consume(tmp); try_forwarding = true; break; case buffer_node::req_item: internal_pop(tmp); break; case buffer_node::res_item: internal_reserve(tmp); break; } } // process pops! for now, no special pop processing if (markmy_tail) heapify(); if (try_forwarding && !this->forwarder_busy) { this->forwarder_busy = true; task *new_task = new(task::allocate_additional_child_of(*(this->my_parent))) internal:: forward_task_bypass < buffer_node >(*this); // tmp should point to the last item handled by the aggregator. This is the operation // the handling thread enqueued. So modifying that record will be okay. tbb::task *tmp1 = tmp->ltask; tmp->ltask = combine_tasks(tmp1, new_task); } } //! Tries to forward valid items to successors /* override */ void internal_forward_task(prio_operation *op) { T i_copy; task * last_task = NULL; // flagged when a successor accepts size_type counter = this->my_successors.size(); if (this->my_reserved || this->my_tail == 0) { __TBB_store_with_release(op->status, FAILED); this->forwarder_busy = false; return; } // Keep trying to send while there exists an accepting successor while (counter>0 && this->my_tail > 0) { i_copy = this->my_array[0].first; task * new_task = this->my_successors.try_put_task(i_copy); last_task = combine_tasks(last_task, new_task); if ( new_task ) { if (mark == this->my_tail) --mark; --(this->my_tail); this->my_array[0].first=this->my_array[this->my_tail].first; if (this->my_tail > 1) // don't reheap for heap of size 1 reheap(); } --counter; } op->ltask = last_task; if (last_task && !counter) __TBB_store_with_release(op->status, SUCCEEDED); else { __TBB_store_with_release(op->status, FAILED); this->forwarder_busy = false; } } /* override */ void internal_push(prio_operation *op) { if ( this->my_tail >= this->my_array_size ) this->grow_my_array( this->my_tail + 1 ); this->my_array[this->my_tail] = std::make_pair( *(op->elem), true ); ++(this->my_tail); __TBB_store_with_release(op->status, SUCCEEDED); } /* override */ void internal_pop(prio_operation *op) { if ( this->my_reserved == true || this->my_tail == 0 ) { __TBB_store_with_release(op->status, FAILED); } else { if (markmy_tail && compare(this->my_array[0].first, this->my_array[this->my_tail-1].first)) { // there are newly pushed elems; last one higher than top // copy the data *(op->elem) = this->my_array[this->my_tail-1].first; --(this->my_tail); __TBB_store_with_release(op->status, SUCCEEDED); } else { // extract and push the last element down heap *(op->elem) = this->my_array[0].first; // copy the data if (mark == this->my_tail) --mark; --(this->my_tail); __TBB_store_with_release(op->status, SUCCEEDED); this->my_array[0].first=this->my_array[this->my_tail].first; if (this->my_tail > 1) // don't reheap for heap of size 1 reheap(); } } } /* override */ void internal_reserve(prio_operation *op) { if (this->my_reserved == true || this->my_tail == 0) { __TBB_store_with_release(op->status, FAILED); } else { this->my_reserved = true; *(op->elem) = reserved_item = this->my_array[0].first; if (mark == this->my_tail) --mark; --(this->my_tail); __TBB_store_with_release(op->status, SUCCEEDED); this->my_array[0].first = this->my_array[this->my_tail].first; if (this->my_tail > 1) // don't reheap for heap of size 1 reheap(); } } /* override */ void internal_consume(prio_operation *op) { this->my_reserved = false; __TBB_store_with_release(op->status, SUCCEEDED); } /* override */ void internal_release(prio_operation *op) { if (this->my_tail >= this->my_array_size) this->grow_my_array( this->my_tail + 1 ); this->my_array[this->my_tail] = std::make_pair(reserved_item, true); ++(this->my_tail); this->my_reserved = false; __TBB_store_with_release(op->status, SUCCEEDED); heapify(); } private: Compare compare; size_type mark; input_type reserved_item; void heapify() { if (!mark) mark = 1; for (; markmy_tail; ++mark) { // for each unheaped element size_type cur_pos = mark; input_type to_place = this->my_array[mark].first; do { // push to_place up the heap size_type parent = (cur_pos-1)>>1; if (!compare(this->my_array[parent].first, to_place)) break; this->my_array[cur_pos].first = this->my_array[parent].first; cur_pos = parent; } while( cur_pos ); this->my_array[cur_pos].first = to_place; } } void reheap() { size_type cur_pos=0, child=1; while (child < mark) { size_type target = child; if (child+1my_array[child].first, this->my_array[child+1].first)) ++target; // target now has the higher priority child if (compare(this->my_array[target].first, this->my_array[this->my_tail].first)) break; this->my_array[cur_pos].first = this->my_array[target].first; cur_pos = target; child = (cur_pos<<1)+1; } this->my_array[cur_pos].first = this->my_array[this->my_tail].first; } }; //! Forwards messages only if the threshold has not been reached /** This node forwards items until its threshold is reached. It contains no buffering. If the downstream node rejects, the message is dropped. */ template< typename T > class limiter_node : public graph_node, public receiver< T >, public sender< T > { protected: using graph_node::my_graph; public: typedef T input_type; typedef T output_type; typedef sender< input_type > predecessor_type; typedef receiver< output_type > successor_type; private: task *my_root_task; size_t my_threshold; size_t my_count; internal::predecessor_cache< T > my_predecessors; spin_mutex my_mutex; internal::broadcast_cache< T > my_successors; int init_decrement_predecessors; friend class internal::forward_task_bypass< limiter_node >; // Let decrementer call decrement_counter() friend class internal::decrementer< limiter_node >; // only returns a valid task pointer or NULL, never SUCCESSFULLY_ENQUEUED task * decrement_counter() { input_type v; task *rval = NULL; // If we can't get / put an item immediately then drop the count if ( my_predecessors.get_item( v ) == false || (rval = my_successors.try_put_task(v)) == NULL ) { spin_mutex::scoped_lock lock(my_mutex); --my_count; if ( !my_predecessors.empty() ) { task *rtask = new ( task::allocate_additional_child_of( *my_root_task ) ) internal::forward_task_bypass< limiter_node >( *this ); __TBB_ASSERT(!rval, "Have two tasks to handle"); return rtask; } } return rval; } void forward() { { spin_mutex::scoped_lock lock(my_mutex); if ( my_count < my_threshold ) ++my_count; else return; } task * rtask = decrement_counter(); if(rtask) task::enqueue(*rtask); } task *forward_task() { spin_mutex::scoped_lock lock(my_mutex); if ( my_count >= my_threshold ) return NULL; ++my_count; task * rtask = decrement_counter(); return rtask; } public: //! The internal receiver< continue_msg > that decrements the count internal::decrementer< limiter_node > decrement; //! Constructor limiter_node(graph &g, size_t threshold, int num_decrement_predecessors=0) : graph_node(g), my_root_task(g.root_task()), my_threshold(threshold), my_count(0), init_decrement_predecessors(num_decrement_predecessors), decrement(num_decrement_predecessors) { my_predecessors.set_owner(this); my_successors.set_owner(this); decrement.set_owner(this); } //! Copy constructor limiter_node( const limiter_node& src ) : graph_node(src.my_graph), receiver(), sender(), my_root_task(src.my_root_task), my_threshold(src.my_threshold), my_count(0), init_decrement_predecessors(src.init_decrement_predecessors), decrement(src.init_decrement_predecessors) { my_predecessors.set_owner(this); my_successors.set_owner(this); decrement.set_owner(this); } //! Replace the current successor with this new successor /* override */ bool register_successor( receiver &r ) { my_successors.register_successor(r); return true; } //! Removes a successor from this node /** r.remove_predecessor(*this) is also called. */ /* override */ bool remove_successor( receiver &r ) { r.remove_predecessor(*this); my_successors.remove_successor(r); return true; } //! Removes src from the list of cached predecessors. /* override */ bool register_predecessor( predecessor_type &src ) { spin_mutex::scoped_lock lock(my_mutex); my_predecessors.add( src ); if ( my_count < my_threshold && !my_successors.empty() ) { task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) ) internal:: forward_task_bypass < limiter_node >( *this ) ); } return true; } //! Removes src from the list of cached predecessors. /* override */ bool remove_predecessor( predecessor_type &src ) { my_predecessors.remove( src ); return true; } protected: template< typename R, typename B > friend class run_and_put_task; template friend class internal::broadcast_cache; template friend class internal::round_robin_cache; //! Puts an item to this receiver /* override */ task *try_put_task( const T &t ) { { spin_mutex::scoped_lock lock(my_mutex); if ( my_count >= my_threshold ) return NULL; else ++my_count; } task * rtask = my_successors.try_put_task(t); if ( !rtask ) { // try_put_task failed. spin_mutex::scoped_lock lock(my_mutex); --my_count; if ( !my_predecessors.empty() ) { rtask = new ( task::allocate_additional_child_of( *my_root_task ) ) internal::forward_task_bypass< limiter_node >( *this ); } } return rtask; } /*override*/void reset() { my_count = 0; my_predecessors.reset(); decrement.reset_receiver(); } /*override*/void reset_receiver() { my_predecessors.reset(); } }; // limiter_node #include "internal/_flow_graph_join_impl.h" using internal::reserving_port; using internal::queueing_port; using internal::tag_matching_port; using internal::input_port; using internal::tag_value; using internal::NO_TAG; template class join_node; template class join_node: public internal::unfolded_join_node::value, reserving_port, OutputTuple, reserving> { private: static const int N = tbb::flow::tuple_size::value; typedef typename internal::unfolded_join_node unfolded_type; public: typedef OutputTuple output_type; typedef typename unfolded_type::input_ports_type input_ports_type; join_node(graph &g) : unfolded_type(g) { } join_node(const join_node &other) : unfolded_type(other) {} }; template class join_node: public internal::unfolded_join_node::value, queueing_port, OutputTuple, queueing> { private: static const int N = tbb::flow::tuple_size::value; typedef typename internal::unfolded_join_node unfolded_type; public: typedef OutputTuple output_type; typedef typename unfolded_type::input_ports_type input_ports_type; join_node(graph &g) : unfolded_type(g) { } join_node(const join_node &other) : unfolded_type(other) {} }; // template for tag_matching join_node template class join_node : public internal::unfolded_join_node::value, tag_matching_port, OutputTuple, tag_matching> { private: static const int N = tbb::flow::tuple_size::value; typedef typename internal::unfolded_join_node unfolded_type; public: typedef OutputTuple output_type; typedef typename unfolded_type::input_ports_type input_ports_type; template join_node(graph &g, B0 b0, B1 b1) : unfolded_type(g, b0, b1) { } template join_node(graph &g, B0 b0, B1 b1, B2 b2) : unfolded_type(g, b0, b1, b2) { } template join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3) : unfolded_type(g, b0, b1, b2, b3) { } template join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4) : unfolded_type(g, b0, b1, b2, b3, b4) { } #if __TBB_VARIADIC_MAX >= 6 template join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5) : unfolded_type(g, b0, b1, b2, b3, b4, b5) { } #endif #if __TBB_VARIADIC_MAX >= 7 template join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6) { } #endif #if __TBB_VARIADIC_MAX >= 8 template join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7) { } #endif #if __TBB_VARIADIC_MAX >= 9 template join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8) { } #endif #if __TBB_VARIADIC_MAX >= 10 template join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8, B9 b9) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) { } #endif join_node(const join_node &other) : unfolded_type(other) {} }; #if TBB_PREVIEW_GRAPH_NODES // or node #include "internal/_flow_graph_or_impl.h" template class or_node : public internal::unfolded_or_node { private: static const int N = tbb::flow::tuple_size::value; public: typedef typename internal::or_output_type::type output_type; typedef typename internal::unfolded_or_node unfolded_type; or_node(graph& g) : unfolded_type(g) { } // Copy constructor or_node( const or_node& other ) : unfolded_type(other) { } }; #endif // TBB_PREVIEW_GRAPH_NODES //! Makes an edge between a single predecessor and a single successor template< typename T > inline void make_edge( sender &p, receiver &s ) { p.register_successor( s ); } //! Makes an edge between a single predecessor and a single successor template< typename T > inline void remove_edge( sender &p, receiver &s ) { p.remove_successor( s ); } //! Returns a copy of the body from a function or continue node template< typename Body, typename Node > Body copy_body( Node &n ) { return n.template copy_function_object(); } } // interface6 using interface6::graph; using interface6::graph_node; using interface6::continue_msg; using interface6::sender; using interface6::receiver; using interface6::continue_receiver; using interface6::source_node; using interface6::function_node; using interface6::multifunction_node; using interface6::split_node; using interface6::internal::output_port; #if TBB_PREVIEW_GRAPH_NODES using interface6::or_node; #endif using interface6::continue_node; using interface6::overwrite_node; using interface6::write_once_node; using interface6::broadcast_node; using interface6::buffer_node; using interface6::queue_node; using interface6::sequencer_node; using interface6::priority_queue_node; using interface6::limiter_node; using namespace interface6::internal::graph_policy_namespace; using interface6::join_node; using interface6::input_port; using interface6::copy_body; using interface6::make_edge; using interface6::remove_edge; using interface6::internal::NO_TAG; using interface6::internal::tag_value; } // flow } // tbb #endif // __TBB_flow_graph_H