#include "storm/solver/TopologicalMinMaxLinearEquationSolver.h" #include "storm/environment/solver/MinMaxSolverEnvironment.h" #include "storm/environment/solver/TopologicalSolverEnvironment.h" #include "storm/utility/constants.h" #include "storm/utility/vector.h" #include "storm/exceptions/InvalidStateException.h" #include "storm/exceptions/InvalidEnvironmentException.h" #include "storm/exceptions/UnexpectedException.h" #include "storm/exceptions/UncheckedRequirementException.h" namespace storm { namespace solver { template TopologicalMinMaxLinearEquationSolver::TopologicalMinMaxLinearEquationSolver() { // Intentionally left empty. } template TopologicalMinMaxLinearEquationSolver::TopologicalMinMaxLinearEquationSolver(storm::storage::SparseMatrix const& A) : StandardMinMaxLinearEquationSolver(A) { // Intentionally left empty. } template TopologicalMinMaxLinearEquationSolver::TopologicalMinMaxLinearEquationSolver(storm::storage::SparseMatrix&& A) : StandardMinMaxLinearEquationSolver(std::move(A)) { // Intentionally left empty. } template storm::Environment TopologicalMinMaxLinearEquationSolver::getEnvironmentForUnderlyingSolver(storm::Environment const& env, bool adaptPrecision) const { storm::Environment subEnv(env); subEnv.solver().minMax().setMethod(env.solver().topological().getUnderlyingMinMaxMethod(), env.solver().topological().isUnderlyingMinMaxMethodSetFromDefault()); if (adaptPrecision) { STORM_LOG_ASSERT(this->longestSccChainSize, "Did not compute the longest SCC chain size although it is needed."); storm::RationalNumber subEnvPrec = subEnv.solver().minMax().getPrecision() / storm::utility::convertNumber(this->longestSccChainSize.get()); subEnv.solver().minMax().setPrecision(subEnvPrec); } return subEnv; } template bool TopologicalMinMaxLinearEquationSolver::internalSolveEquations(Environment const& env, OptimizationDirection dir, std::vector& x, std::vector const& b) const { STORM_LOG_ASSERT(x.size() == this->A->getRowGroupCount(), "Provided x-vector has invalid size."); STORM_LOG_ASSERT(b.size() == this->A->getRowCount(), "Provided b-vector has invalid size."); // For sound computations we need to increase the precision in each SCC bool needAdaptPrecision = env.solver().isForceSoundness(); if (!this->sortedSccDecomposition || (needAdaptPrecision && !this->longestSccChainSize)) { STORM_LOG_TRACE("Creating SCC decomposition."); createSortedSccDecomposition(needAdaptPrecision); } // We do not need to adapt the precision if all SCCs are trivial (i.e., the system is acyclic) needAdaptPrecision = needAdaptPrecision && (this->sortedSccDecomposition->size() != this->A->getRowGroupCount()); storm::Environment sccSolverEnvironment = getEnvironmentForUnderlyingSolver(env, needAdaptPrecision); STORM_LOG_INFO("Found " << this->sortedSccDecomposition->size() << " SCC(s). Average size is " << static_cast(this->A->getRowGroupCount()) / static_cast(this->sortedSccDecomposition->size()) << "."); if (this->longestSccChainSize) { STORM_LOG_INFO("Longest SCC chain size is " << this->longestSccChainSize.get()); } bool returnValue = true; if (this->sortedSccDecomposition->size() == 1) { // Handle the case where there is just one large SCC returnValue = solveFullyConnectedEquationSystem(sccSolverEnvironment, dir, x, b); } else { if (this->isTrackSchedulerSet()) { if (this->schedulerChoices) { this->schedulerChoices.get().resize(x.size()); } else { this->schedulerChoices = std::vector(x.size()); } } storm::storage::BitVector sccRowGroupsAsBitVector(x.size(), false); storm::storage::BitVector sccRowsAsBitVector(b.size(), false); for (auto const& scc : *this->sortedSccDecomposition) { if (scc.size() == 1) { returnValue = solveTrivialScc(*scc.begin(), dir, x, b) && returnValue; } else { sccRowGroupsAsBitVector.clear(); sccRowsAsBitVector.clear(); for (auto const& group : scc) { sccRowGroupsAsBitVector.set(group, true); for (uint64_t row = this->A->getRowGroupIndices()[group]; row < this->A->getRowGroupIndices()[group + 1]; ++row) { sccRowsAsBitVector.set(row, true); } } returnValue = solveScc(sccSolverEnvironment, dir, sccRowGroupsAsBitVector, sccRowsAsBitVector, x, b) && returnValue; } } // If requested, we store the scheduler for retrieval. if (this->isTrackSchedulerSet()) { if (!auxiliaryRowGroupVector) { auxiliaryRowGroupVector = std::make_unique>(this->A->getRowGroupCount()); } this->schedulerChoices = std::vector(this->A->getRowGroupCount()); this->A->multiplyAndReduce(dir, this->A->getRowGroupIndices(), x, &b, *auxiliaryRowGroupVector.get(), &this->schedulerChoices.get()); } } if (!this->isCachingEnabled()) { clearCache(); } return returnValue; } template void TopologicalMinMaxLinearEquationSolver::createSortedSccDecomposition(bool needLongestChainSize) const { // Obtain the scc decomposition this->sortedSccDecomposition = std::make_unique>(*this->A); if (needLongestChainSize) { this->longestSccChainSize = 0; this->sortedSccDecomposition->sortTopologically(*this->A, &(this->longestSccChainSize.get())); } else { this->sortedSccDecomposition->sortTopologically(*this->A); } } template bool TopologicalMinMaxLinearEquationSolver::solveTrivialScc(uint64_t const& sccState, OptimizationDirection dir, std::vector& globalX, std::vector const& globalB) const { ValueType& xi = globalX[sccState]; bool firstRow = true; uint64_t bestRow; for (uint64_t row = this->A->getRowGroupIndices()[sccState]; row < this->A->getRowGroupIndices()[sccState + 1]; ++row) { ValueType rowValue = globalB[row]; bool hasDiagonalEntry = false; ValueType denominator; for (auto const& entry : this->A->getRow(row)) { if (entry.getColumn() == sccState) { hasDiagonalEntry = true; denominator = storm::utility::one() - entry.getValue(); } else { rowValue += entry.getValue() * globalX[entry.getColumn()]; } } if (hasDiagonalEntry) { if (storm::utility::isZero(denominator)) { // In this case we have a selfloop on this state. This can never an optimal choice: // When minimizing, we are looking for the largest fixpoint (which will never be attained by this action) // When maximizing, this choice reflects probability zero (non-optimal) or reward infinity (should already be handled during preprocessing). continue; } else { rowValue /= denominator; } } if (firstRow) { xi = std::move(rowValue); bestRow = row; firstRow = false; } else { if (minimize(dir)) { if (rowValue < xi) { xi = std::move(rowValue); bestRow = row; } } else { if (rowValue > xi) { xi = std::move(rowValue); bestRow = row; } } } } if (this->isTrackSchedulerSet()) { this->schedulerChoices.get()[sccState] = bestRow - this->A->getRowGroupIndices()[sccState]; } STORM_LOG_THROW(!firstRow, storm::exceptions::UnexpectedException, "Empty row group in MinMax equation system."); //std::cout << "Solved trivial scc " << sccState << " with result " << globalX[sccState] << std::endl; return true; } template bool TopologicalMinMaxLinearEquationSolver::solveFullyConnectedEquationSystem(storm::Environment const& sccSolverEnvironment, OptimizationDirection dir, std::vector& x, std::vector const& b) const { if (!this->sccSolver) { this->sccSolver = GeneralMinMaxLinearEquationSolverFactory().create(sccSolverEnvironment); this->sccSolver->setCachingEnabled(true); } this->sccSolver->setMatrix(*this->A); this->sccSolver->setHasUniqueSolution(this->hasUniqueSolution()); this->sccSolver->setBoundsFromOtherSolver(*this); this->sccSolver->setTrackScheduler(this->isTrackSchedulerSet()); if (this->hasInitialScheduler()) { auto choices = this->getInitialScheduler(); this->sccSolver->setInitialScheduler(std::move(choices)); } auto req = this->sccSolver->getRequirements(sccSolverEnvironment, dir); if (req.upperBounds() && this->hasUpperBound()) { req.clearUpperBounds(); } if (req.lowerBounds() && this->hasLowerBound()) { req.clearLowerBounds(); } // If all requirements of the underlying solver have been passed as requirements to the calling site, we can // assume that the system has no end components if the underlying solver requires this. req.clearNoEndComponents(); STORM_LOG_THROW(!req.hasEnabledCriticalRequirement(), storm::exceptions::UncheckedRequirementException, "Solver requirements " + req.getEnabledRequirementsAsString() + " not checked."); this->sccSolver->setRequirementsChecked(true); bool res = this->sccSolver->solveEquations(sccSolverEnvironment, dir, x, b); if (this->isTrackSchedulerSet()) { this->schedulerChoices = this->sccSolver->getSchedulerChoices(); } return res; } template bool TopologicalMinMaxLinearEquationSolver::solveScc(storm::Environment const& sccSolverEnvironment, OptimizationDirection dir, storm::storage::BitVector const& sccRowGroups, storm::storage::BitVector const& sccRows, std::vector& globalX, std::vector const& globalB) const { // Set up the SCC solver if (!this->sccSolver) { this->sccSolver = GeneralMinMaxLinearEquationSolverFactory().create(sccSolverEnvironment); this->sccSolver->setCachingEnabled(true); } this->sccSolver->setHasUniqueSolution(this->hasUniqueSolution()); this->sccSolver->setTrackScheduler(this->isTrackSchedulerSet()); // SCC Matrix storm::storage::SparseMatrix sccA = this->A->getSubmatrix(true, sccRowGroups, sccRowGroups); //std::cout << "Matrix is " << sccA << std::endl; this->sccSolver->setMatrix(std::move(sccA)); // x Vector auto sccX = storm::utility::vector::filterVector(globalX, sccRowGroups); // b Vector std::vector sccB; sccB.reserve(sccRows.getNumberOfSetBits()); for (auto const& row : sccRows) { ValueType bi = globalB[row]; for (auto const& entry : this->A->getRow(row)) { if (!sccRowGroups.get(entry.getColumn())) { bi += entry.getValue() * globalX[entry.getColumn()]; } } sccB.push_back(std::move(bi)); } // initial scheduler if (this->hasInitialScheduler()) { auto sccInitChoices = storm::utility::vector::filterVector(this->getInitialScheduler(), sccRowGroups); this->sccSolver->setInitialScheduler(std::move(sccInitChoices)); } // lower/upper bounds if (this->hasLowerBound(storm::solver::AbstractEquationSolver::BoundType::Global)) { this->sccSolver->setLowerBound(this->getLowerBound()); } else if (this->hasLowerBound(storm::solver::AbstractEquationSolver::BoundType::Local)) { this->sccSolver->setLowerBounds(storm::utility::vector::filterVector(this->getLowerBounds(), sccRowGroups)); } if (this->hasUpperBound(storm::solver::AbstractEquationSolver::BoundType::Global)) { this->sccSolver->setUpperBound(this->getUpperBound()); } else if (this->hasUpperBound(storm::solver::AbstractEquationSolver::BoundType::Local)) { this->sccSolver->setUpperBounds(storm::utility::vector::filterVector(this->getUpperBounds(), sccRowGroups)); } // Requirements auto req = this->sccSolver->getRequirements(sccSolverEnvironment, dir); if (req.upperBounds() && this->hasUpperBound()) { req.clearUpperBounds(); } if (req.lowerBounds() && this->hasLowerBound()) { req.clearLowerBounds(); } if (req.validInitialScheduler() && this->hasInitialScheduler()) { req.clearValidInitialScheduler(); } STORM_LOG_THROW(!req.hasEnabledCriticalRequirement(), storm::exceptions::UncheckedRequirementException, "Solver requirements " + req.getEnabledRequirementsAsString() + " not checked."); this->sccSolver->setRequirementsChecked(true); // Invoke scc solver bool res = this->sccSolver->solveEquations(sccSolverEnvironment, dir, sccX, sccB); //std::cout << "rhs is " << storm::utility::vector::toString(sccB) << std::endl; //std::cout << "x is " << storm::utility::vector::toString(sccX) << std::endl; // Set Scheduler choices if (this->isTrackSchedulerSet()) { storm::utility::vector::setVectorValues(this->schedulerChoices.get(), sccRowGroups, this->sccSolver->getSchedulerChoices()); } // Set solution storm::utility::vector::setVectorValues(globalX, sccRowGroups, sccX); return res; } template MinMaxLinearEquationSolverRequirements TopologicalMinMaxLinearEquationSolver::getRequirements(Environment const& env, boost::optional const& direction, bool const& hasInitialScheduler) const { // Return the requirements of the underlying solver return GeneralMinMaxLinearEquationSolverFactory().getRequirements(getEnvironmentForUnderlyingSolver(env), this->hasUniqueSolution(), direction, hasInitialScheduler); } template void TopologicalMinMaxLinearEquationSolver::clearCache() const { sortedSccDecomposition.reset(); longestSccChainSize = boost::none; sccSolver.reset(); auxiliaryRowGroupVector.reset(); StandardMinMaxLinearEquationSolver::clearCache(); } // Explicitly instantiate the min max linear equation solver. template class TopologicalMinMaxLinearEquationSolver; #ifdef STORM_HAVE_CARL template class TopologicalMinMaxLinearEquationSolver; #endif } }