#include "src/builder/DdPrismModelBuilder.h" #include #include "src/models/symbolic/Dtmc.h" #include "src/models/symbolic/Ctmc.h" #include "src/models/symbolic/Mdp.h" #include "src/models/symbolic/StandardRewardModel.h" #include "src/storage/dd/DdManager.h" #include "src/settings/SettingsManager.h" #include "src/exceptions/InvalidStateException.h" #include "src/exceptions/NotSupportedException.h" #include "src/exceptions/InvalidArgumentException.h" #include "src/utility/prism.h" #include "src/utility/math.h" #include "src/storage/prism/Program.h" #include "src/storage/prism/Compositions.h" #include "src/storage/dd/Add.h" #include "src/storage/dd/cudd/CuddAddIterator.h" #include "src/storage/dd/Bdd.h" #include "src/settings/modules/MarkovChainSettings.h" namespace storm { namespace builder { template class DdPrismModelBuilder::GenerationInformation { public: GenerationInformation(storm::prism::Program const& program) : program(program), manager(std::make_shared>()), rowMetaVariables(), variableToRowMetaVariableMap(std::make_shared>()), rowExpressionAdapter(std::make_shared>(manager, variableToRowMetaVariableMap)), columnMetaVariables(), variableToColumnMetaVariableMap((std::make_shared>())), columnExpressionAdapter(std::make_shared>(manager, variableToColumnMetaVariableMap)), rowColumnMetaVariablePairs(), nondeterminismMetaVariables(), variableToIdentityMap(), allGlobalVariables(), moduleToIdentityMap() { // Initializes variables and identity DDs. createMetaVariablesAndIdentities(); rowExpressionAdapter = std::shared_ptr>(new storm::adapters::AddExpressionAdapter(manager, variableToRowMetaVariableMap)); columnExpressionAdapter = std::shared_ptr>(new storm::adapters::AddExpressionAdapter(manager, variableToColumnMetaVariableMap)); } // The program that is currently translated. storm::prism::Program const& program; // The manager used to build the decision diagrams. std::shared_ptr> manager; // The meta variables for the row encoding. std::set rowMetaVariables; std::shared_ptr> variableToRowMetaVariableMap; std::shared_ptr> rowExpressionAdapter; // The meta variables for the column encoding. std::set columnMetaVariables; std::shared_ptr> variableToColumnMetaVariableMap; std::shared_ptr> columnExpressionAdapter; // All pairs of row/column meta variables. std::vector> rowColumnMetaVariablePairs; // The meta variables used to encode the nondeterminism. std::vector nondeterminismMetaVariables; // The meta variables used to encode the synchronization. std::vector synchronizationMetaVariables; // A set of all variables used for encoding the nondeterminism (i.e. nondetermism + synchronization // variables). This is handy to abstract from this variable set. std::set allNondeterminismVariables; // As set of all variables used for encoding the synchronization. std::set allSynchronizationMetaVariables; // DDs representing the identity for each variable. std::map> variableToIdentityMap; // A set of all meta variables that correspond to global variables. std::set allGlobalVariables; // DDs representing the identity for each module. std::map> moduleToIdentityMap; // DDs representing the valid ranges of the variables of each module. std::map> moduleToRangeMap; private: /*! * Creates the required meta variables and variable/module identities. */ void createMetaVariablesAndIdentities() { // Add synchronization variables. for (auto const& actionIndex : program.getSynchronizingActionIndices()) { std::pair variablePair = manager->addMetaVariable(program.getActionName(actionIndex)); synchronizationMetaVariables.push_back(variablePair.first); allSynchronizationMetaVariables.insert(variablePair.first); allNondeterminismVariables.insert(variablePair.first); } // Add nondeterminism variables (number of modules + number of commands). uint_fast64_t numberOfNondeterminismVariables = program.getModules().size(); for (auto const& module : program.getModules()) { numberOfNondeterminismVariables += module.getNumberOfCommands(); } for (uint_fast64_t i = 0; i < numberOfNondeterminismVariables; ++i) { std::pair variablePair = manager->addMetaVariable("nondet" + std::to_string(i)); nondeterminismMetaVariables.push_back(variablePair.first); allNondeterminismVariables.insert(variablePair.first); } // Create meta variables for global program variables. for (storm::prism::IntegerVariable const& integerVariable : program.getGlobalIntegerVariables()) { int_fast64_t low = integerVariable.getLowerBoundExpression().evaluateAsInt(); int_fast64_t high = integerVariable.getUpperBoundExpression().evaluateAsInt(); std::pair variablePair = manager->addMetaVariable(integerVariable.getName(), low, high); STORM_LOG_TRACE("Created meta variables for global integer variable: " << variablePair.first.getName() << "[" << variablePair.first.getIndex() << "] and " << variablePair.second.getName() << "[" << variablePair.second.getIndex() << "]"); rowMetaVariables.insert(variablePair.first); variableToRowMetaVariableMap->emplace(integerVariable.getExpressionVariable(), variablePair.first); columnMetaVariables.insert(variablePair.second); variableToColumnMetaVariableMap->emplace(integerVariable.getExpressionVariable(), variablePair.second); storm::dd::Add variableIdentity = manager->template getIdentity(variablePair.first).equals(manager->template getIdentity(variablePair.second)).template toAdd() * manager->getRange(variablePair.first).template toAdd() * manager->getRange(variablePair.second).template toAdd(); variableToIdentityMap.emplace(integerVariable.getExpressionVariable(), variableIdentity); rowColumnMetaVariablePairs.push_back(variablePair); allGlobalVariables.insert(integerVariable.getExpressionVariable()); } for (storm::prism::BooleanVariable const& booleanVariable : program.getGlobalBooleanVariables()) { std::pair variablePair = manager->addMetaVariable(booleanVariable.getName()); STORM_LOG_TRACE("Created meta variables for global boolean variable: " << variablePair.first.getName() << "[" << variablePair.first.getIndex() << "] and " << variablePair.second.getName() << "[" << variablePair.second.getIndex() << "]"); rowMetaVariables.insert(variablePair.first); variableToRowMetaVariableMap->emplace(booleanVariable.getExpressionVariable(), variablePair.first); columnMetaVariables.insert(variablePair.second); variableToColumnMetaVariableMap->emplace(booleanVariable.getExpressionVariable(), variablePair.second); storm::dd::Add variableIdentity = manager->template getIdentity(variablePair.first).equals(manager->template getIdentity(variablePair.second)).template toAdd(); variableToIdentityMap.emplace(booleanVariable.getExpressionVariable(), variableIdentity); rowColumnMetaVariablePairs.push_back(variablePair); allGlobalVariables.insert(booleanVariable.getExpressionVariable()); } // Create meta variables for each of the modules' variables. for (storm::prism::Module const& module : program.getModules()) { storm::dd::Bdd moduleIdentity = manager->getBddOne(); storm::dd::Bdd moduleRange = manager->getBddOne(); for (storm::prism::IntegerVariable const& integerVariable : module.getIntegerVariables()) { int_fast64_t low = integerVariable.getLowerBoundExpression().evaluateAsInt(); int_fast64_t high = integerVariable.getUpperBoundExpression().evaluateAsInt(); std::pair variablePair = manager->addMetaVariable(integerVariable.getName(), low, high); STORM_LOG_TRACE("Created meta variables for integer variable: " << variablePair.first.getName() << "[" << variablePair.first.getIndex() << "] and " << variablePair.second.getName() << "[" << variablePair.second.getIndex() << "]"); rowMetaVariables.insert(variablePair.first); variableToRowMetaVariableMap->emplace(integerVariable.getExpressionVariable(), variablePair.first); columnMetaVariables.insert(variablePair.second); variableToColumnMetaVariableMap->emplace(integerVariable.getExpressionVariable(), variablePair.second); storm::dd::Bdd variableIdentity = manager->template getIdentity(variablePair.first).equals(manager->template getIdentity(variablePair.second)) && manager->getRange(variablePair.first) && manager->getRange(variablePair.second); variableToIdentityMap.emplace(integerVariable.getExpressionVariable(), variableIdentity.template toAdd()); moduleIdentity &= variableIdentity; moduleRange &= manager->getRange(variablePair.first); rowColumnMetaVariablePairs.push_back(variablePair); } for (storm::prism::BooleanVariable const& booleanVariable : module.getBooleanVariables()) { std::pair variablePair = manager->addMetaVariable(booleanVariable.getName()); STORM_LOG_TRACE("Created meta variables for boolean variable: " << variablePair.first.getName() << "[" << variablePair.first.getIndex() << "] and " << variablePair.second.getName() << "[" << variablePair.second.getIndex() << "]"); rowMetaVariables.insert(variablePair.first); variableToRowMetaVariableMap->emplace(booleanVariable.getExpressionVariable(), variablePair.first); columnMetaVariables.insert(variablePair.second); variableToColumnMetaVariableMap->emplace(booleanVariable.getExpressionVariable(), variablePair.second); storm::dd::Bdd variableIdentity = manager->template getIdentity(variablePair.first).equals(manager->template getIdentity(variablePair.second)) && manager->getRange(variablePair.first) && manager->getRange(variablePair.second); variableToIdentityMap.emplace(booleanVariable.getExpressionVariable(), variableIdentity.template toAdd()); moduleIdentity &= variableIdentity; moduleRange &= manager->getRange(variablePair.first); rowColumnMetaVariablePairs.push_back(variablePair); } moduleToIdentityMap[module.getName()] = moduleIdentity.template toAdd(); moduleToRangeMap[module.getName()] = moduleRange.template toAdd(); } } }; template class ModuleComposer : public storm::prism::CompositionVisitor { public: ModuleComposer(typename DdPrismModelBuilder::GenerationInformation& generationInfo) : generationInfo(generationInfo) { // Intentionally left empty. } typename DdPrismModelBuilder::ModuleDecisionDiagram compose(storm::prism::Composition const& composition) { return boost::any_cast::ModuleDecisionDiagram>(composition.accept(*this, newSynchronizingActionToOffsetMap())); } std::map newSynchronizingActionToOffsetMap() const { std::map result; for (auto const& actionIndex : generationInfo.program.getSynchronizingActionIndices()) { result[actionIndex] = 0; } return result; } std::map updateSynchronizingActionToOffsetMap(typename DdPrismModelBuilder::ModuleDecisionDiagram const& sub, std::map const& oldMapping) const { std::map result = oldMapping; for (auto const& action : sub.synchronizingActionToDecisionDiagramMap) { result[action.first] = action.second.numberOfUsedNondeterminismVariables; } return result; } virtual boost::any visit(storm::prism::ModuleComposition const& composition, boost::any const& data) override { STORM_LOG_TRACE("Translating module '" << composition.getModuleName() << "'."); std::map const& synchronizingActionToOffsetMap = boost::any_cast const&>(data); typename DdPrismModelBuilder::ModuleDecisionDiagram result = DdPrismModelBuilder::createModuleDecisionDiagram(generationInfo, generationInfo.program.getModule(composition.getModuleName()), synchronizingActionToOffsetMap); return result; } virtual boost::any visit(storm::prism::RenamingComposition const& composition, boost::any const& data) override { // Create the mapping from action indices to action indices. std::map renaming; for (auto const& namePair : composition.getActionRenaming()) { STORM_LOG_THROW(generationInfo.program.hasAction(namePair.first), storm::exceptions::InvalidArgumentException, "Composition refers to unknown action '" << namePair.first << "'."); STORM_LOG_THROW(generationInfo.program.hasAction(namePair.second), storm::exceptions::InvalidArgumentException, "Composition refers to unknown action '" << namePair.second << "'."); renaming.emplace(generationInfo.program.getActionIndex(namePair.first), generationInfo.program.getActionIndex(namePair.second)); } // Prepare the new offset mapping. std::map const& synchronizingActionToOffsetMap = boost::any_cast const&>(data); std::map newSynchronizingActionToOffsetMap = synchronizingActionToOffsetMap; for (auto const& indexPair : renaming) { auto it = synchronizingActionToOffsetMap.find(indexPair.second); STORM_LOG_THROW(it != synchronizingActionToOffsetMap.end(), storm::exceptions::InvalidArgumentException, "Invalid action index " << indexPair.second << "."); newSynchronizingActionToOffsetMap[indexPair.first] = it->second; } // Then, we translate the subcomposition. typename DdPrismModelBuilder::ModuleDecisionDiagram sub = boost::any_cast::ModuleDecisionDiagram>(composition.getSubcomposition().accept(*this, newSynchronizingActionToOffsetMap)); // Perform the renaming and return result. return rename(sub, renaming); } virtual boost::any visit(storm::prism::HidingComposition const& composition, boost::any const& data) override { // Create the mapping from action indices to action indices. std::set actionIndicesToHide; for (auto const& action : composition.getActionsToHide()) { STORM_LOG_THROW(generationInfo.program.hasAction(action), storm::exceptions::InvalidArgumentException, "Composition refers to unknown action '" << action << "'."); actionIndicesToHide.insert(generationInfo.program.getActionIndex(action)); } // Prepare the new offset mapping. std::map const& synchronizingActionToOffsetMap = boost::any_cast const&>(data); std::map newSynchronizingActionToOffsetMap = synchronizingActionToOffsetMap; for (auto const& index : actionIndicesToHide) { newSynchronizingActionToOffsetMap[index] = 0; } // Then, we translate the subcomposition. typename DdPrismModelBuilder::ModuleDecisionDiagram sub = boost::any_cast::ModuleDecisionDiagram>(composition.getSubcomposition().accept(*this, newSynchronizingActionToOffsetMap)); // Perform the hiding and return result. hide(sub, actionIndicesToHide); return sub; } virtual boost::any visit(storm::prism::SynchronizingParallelComposition const& composition, boost::any const& data) override { // First, we translate the subcompositions. typename DdPrismModelBuilder::ModuleDecisionDiagram left = boost::any_cast::ModuleDecisionDiagram>(composition.getLeftSubcomposition().accept(*this, data)); // Prepare the new offset mapping. std::map const& synchronizingActionToOffsetMap = boost::any_cast const&>(data); std::map newSynchronizingActionToOffsetMap = synchronizingActionToOffsetMap; for (auto const& action : left.synchronizingActionToDecisionDiagramMap) { newSynchronizingActionToOffsetMap[action.first] = action.second.numberOfUsedNondeterminismVariables; } typename DdPrismModelBuilder::ModuleDecisionDiagram right = boost::any_cast::ModuleDecisionDiagram>(composition.getRightSubcomposition().accept(*this, newSynchronizingActionToOffsetMap)); // Then, determine the action indices on which we need to synchronize. std::set leftSynchronizationActionIndices = left.getSynchronizingActionIndices(); std::set rightSynchronizationActionIndices = right.getSynchronizingActionIndices(); std::set synchronizationActionIndices; std::set_intersection(leftSynchronizationActionIndices.begin(), leftSynchronizationActionIndices.end(), rightSynchronizationActionIndices.begin(), rightSynchronizationActionIndices.end(), std::inserter(synchronizationActionIndices, synchronizationActionIndices.begin())); // Finally, we compose the subcompositions to create the result. composeInParallel(left, right, synchronizationActionIndices); return left; } virtual boost::any visit(storm::prism::InterleavingParallelComposition const& composition, boost::any const& data) override { // First, we translate the subcompositions. typename DdPrismModelBuilder::ModuleDecisionDiagram left = boost::any_cast::ModuleDecisionDiagram>(composition.getLeftSubcomposition().accept(*this, data)); typename DdPrismModelBuilder::ModuleDecisionDiagram right = boost::any_cast::ModuleDecisionDiagram>(composition.getRightSubcomposition().accept(*this, data)); // Finally, we compose the subcompositions to create the result. composeInParallel(left, right, std::set()); return left; } virtual boost::any visit(storm::prism::RestrictedParallelComposition const& composition, boost::any const& data) override { // Construct the synchronizing action indices from the synchronizing action names. std::set synchronizingActionIndices; for (auto const& action : composition.getSynchronizingActions()) { synchronizingActionIndices.insert(generationInfo.program.getActionIndex(action)); } // Then, we translate the subcompositions. typename DdPrismModelBuilder::ModuleDecisionDiagram left = boost::any_cast::ModuleDecisionDiagram>(composition.getLeftSubcomposition().accept(*this, data)); // Prepare the new offset mapping. std::map const& synchronizingActionToOffsetMap = boost::any_cast const&>(data); std::map newSynchronizingActionToOffsetMap = synchronizingActionToOffsetMap; for (auto const& actionIndex : synchronizingActionIndices) { auto it = left.synchronizingActionToDecisionDiagramMap.find(actionIndex); if (it != left.synchronizingActionToDecisionDiagramMap.end()) { newSynchronizingActionToOffsetMap[actionIndex] = it->second.numberOfUsedNondeterminismVariables; } } typename DdPrismModelBuilder::ModuleDecisionDiagram right = boost::any_cast::ModuleDecisionDiagram>(composition.getRightSubcomposition().accept(*this, newSynchronizingActionToOffsetMap)); std::set leftSynchronizationActionIndices = left.getSynchronizingActionIndices(); bool isContainedInLeft = std::includes(leftSynchronizationActionIndices.begin(), leftSynchronizationActionIndices.end(), synchronizingActionIndices.begin(), synchronizingActionIndices.end()); STORM_LOG_WARN_COND(isContainedInLeft, "Left subcomposition of composition '" << composition << "' does not include all actions over which to synchronize."); std::set rightSynchronizationActionIndices = right.getSynchronizingActionIndices(); bool isContainedInRight = std::includes(rightSynchronizationActionIndices.begin(), rightSynchronizationActionIndices.end(), synchronizingActionIndices.begin(), synchronizingActionIndices.end()); STORM_LOG_WARN_COND(isContainedInRight, "Right subcomposition of composition '" << composition << "' does not include all actions over which to synchronize."); // Finally, we compose the subcompositions to create the result. composeInParallel(left, right, synchronizingActionIndices); return left; } private: /*! * Hides the actions of the given module according to the given set. As a result, the module is modified in * place. */ void hide(typename DdPrismModelBuilder::ModuleDecisionDiagram& sub, std::set const& actionIndicesToHide) const { STORM_LOG_TRACE("Hiding actions."); for (auto const& actionIndex : actionIndicesToHide) { auto it = sub.synchronizingActionToDecisionDiagramMap.find(actionIndex); if (it != sub.synchronizingActionToDecisionDiagramMap.end()) { sub.independentAction = DdPrismModelBuilder::combineUnsynchronizedActions(generationInfo, sub.independentAction, it->second); sub.numberOfUsedNondeterminismVariables = std::max(sub.numberOfUsedNondeterminismVariables, sub.independentAction.numberOfUsedNondeterminismVariables); sub.synchronizingActionToDecisionDiagramMap.erase(it); } } } /*! * Renames the actions of the given module according to the given renaming. */ typename DdPrismModelBuilder::ModuleDecisionDiagram rename(typename DdPrismModelBuilder::ModuleDecisionDiagram& sub, std::map const& renaming) const { STORM_LOG_TRACE("Renaming actions."); std::map::ActionDecisionDiagram> actionIndexToDdMap; // Go through all action DDs with a synchronizing label and rename them if they appear in the renaming. for (auto& action : sub.synchronizingActionToDecisionDiagramMap) { auto renamingIt = renaming.find(action.first); if (renamingIt != renaming.end()) { // If the action is to be renamed and an action with the target index already exists, we need // to combine the action DDs. auto itNewActions = actionIndexToDdMap.find(renamingIt->second); if (itNewActions != actionIndexToDdMap.end()) { actionIndexToDdMap[renamingIt->second] = DdPrismModelBuilder::combineUnsynchronizedActions(generationInfo, action.second, itNewActions->second); } else { // In this case, we can simply copy the action over. actionIndexToDdMap[renamingIt->second] = action.second; } } else { // If the action is not to be renamed, we need to copy it over. However, if some other action // was renamed to the very same action name before, we need to combine the transitions. auto itNewActions = actionIndexToDdMap.find(action.first); if (itNewActions != actionIndexToDdMap.end()) { actionIndexToDdMap[action.first] = DdPrismModelBuilder::combineUnsynchronizedActions(generationInfo, action.second, itNewActions->second); } else { // In this case, we can simply copy the action over. actionIndexToDdMap[action.first] = action.second; } } } return typename DdPrismModelBuilder::ModuleDecisionDiagram(sub.independentAction, actionIndexToDdMap, sub.identity, sub.numberOfUsedNondeterminismVariables); } /*! * Composes the given modules while synchronizing over the provided action indices. As a result, the first * module is modified in place and will contain the composition after a call to this method. */ void composeInParallel(typename DdPrismModelBuilder::ModuleDecisionDiagram& left, typename DdPrismModelBuilder::ModuleDecisionDiagram& right, std::set const& synchronizationActionIndices) const { STORM_LOG_TRACE("Composing two modules."); // Combine the tau action. uint_fast64_t numberOfUsedNondeterminismVariables = right.independentAction.numberOfUsedNondeterminismVariables; left.independentAction = DdPrismModelBuilder::combineUnsynchronizedActions(generationInfo, left.independentAction, right.independentAction, left.identity, right.identity); numberOfUsedNondeterminismVariables = std::max(numberOfUsedNondeterminismVariables, left.independentAction.numberOfUsedNondeterminismVariables); // Create an empty action for the case where one of the modules does not have a certain action. typename DdPrismModelBuilder::ActionDecisionDiagram emptyAction(*generationInfo.manager); // Treat all non-tau actions of the left module. for (auto& action : left.synchronizingActionToDecisionDiagramMap) { // If we need to synchronize over this action index, we try to do so now. if (synchronizationActionIndices.find(action.first) != synchronizationActionIndices.end()) { // If we are to synchronize over an action that does not exist in the second module, the result // is that the synchronization is the empty action. if (!right.hasSynchronizingAction(action.first)) { action.second = emptyAction; } else { // Otherwise, the actions of the modules are synchronized. action.second = DdPrismModelBuilder::combineSynchronizingActions(generationInfo, action.second, right.synchronizingActionToDecisionDiagramMap[action.first]); } } else { // If we don't synchronize over this action, we need to construct the interleaving. // If both modules contain the action, we need to mutually multiply the other identity. if (right.hasSynchronizingAction(action.first)) { action.second = DdPrismModelBuilder::combineUnsynchronizedActions(generationInfo, action.second, right.synchronizingActionToDecisionDiagramMap[action.first], left.identity, right.identity); } else { // If only the first module has this action, we need to use a dummy action decision diagram // for the second module. action.second = DdPrismModelBuilder::combineUnsynchronizedActions(generationInfo, action.second, emptyAction, left.identity, right.identity); } } numberOfUsedNondeterminismVariables = std::max(numberOfUsedNondeterminismVariables, action.second.numberOfUsedNondeterminismVariables); } // Treat all non-tau actions of the right module. for (auto const& actionIndex : right.getSynchronizingActionIndices()) { // Here, we only need to treat actions that the first module does not have, because we have handled // this case earlier. if (!left.hasSynchronizingAction(actionIndex)) { if (synchronizationActionIndices.find(actionIndex) != synchronizationActionIndices.end()) { // If we are to synchronize over this action that does not exist in the first module, the // result is that the synchronization is the empty action. left.synchronizingActionToDecisionDiagramMap[actionIndex] = emptyAction; } else { // If only the second module has this action, we need to use a dummy action decision diagram // for the first module. left.synchronizingActionToDecisionDiagramMap[actionIndex] = DdPrismModelBuilder::combineUnsynchronizedActions(generationInfo, emptyAction, right.synchronizingActionToDecisionDiagramMap[actionIndex], left.identity, right.identity); } } numberOfUsedNondeterminismVariables = std::max(numberOfUsedNondeterminismVariables, left.synchronizingActionToDecisionDiagramMap[actionIndex].numberOfUsedNondeterminismVariables); } // Combine identity matrices. left.identity = left.identity * right.identity; // Keep track of the number of nondeterminism variables used. left.numberOfUsedNondeterminismVariables = std::max(left.numberOfUsedNondeterminismVariables, numberOfUsedNondeterminismVariables); } typename DdPrismModelBuilder::GenerationInformation& generationInfo; }; template DdPrismModelBuilder::Options::Options() : buildAllRewardModels(true), rewardModelsToBuild(), constantDefinitions(), buildAllLabels(true), labelsToBuild(), terminalStates(), negatedTerminalStates() { // Intentionally left empty. } template DdPrismModelBuilder::Options::Options(storm::logic::Formula const& formula) : buildAllRewardModels(false), rewardModelsToBuild(), constantDefinitions(), buildAllLabels(false), labelsToBuild(std::set()), terminalStates(), negatedTerminalStates() { this->preserveFormula(formula); this->setTerminalStatesFromFormula(formula); } template DdPrismModelBuilder::Options::Options(std::vector> const& formulas) : buildAllRewardModels(false), rewardModelsToBuild(), constantDefinitions(), buildAllLabels(false), labelsToBuild(), terminalStates(), negatedTerminalStates() { if (formulas.empty()) { this->buildAllRewardModels = true; this->buildAllLabels = true; } else { for (auto const& formula : formulas) { this->preserveFormula(*formula); } if (formulas.size() == 1) { this->setTerminalStatesFromFormula(*formulas.front()); } } } template void DdPrismModelBuilder::Options::preserveFormula(storm::logic::Formula const& formula) { // If we already had terminal states, we need to erase them. if (terminalStates) { terminalStates.reset(); } if (negatedTerminalStates) { negatedTerminalStates.reset(); } // If we are not required to build all reward models, we determine the reward models we need to build. if (!buildAllRewardModels) { std::set referencedRewardModels = formula.getReferencedRewardModels(); rewardModelsToBuild.insert(referencedRewardModels.begin(), referencedRewardModels.end()); } // Extract all the labels used in the formula. std::vector> atomicLabelFormulas = formula.getAtomicLabelFormulas(); for (auto const& formula : atomicLabelFormulas) { if (!labelsToBuild) { labelsToBuild = std::set(); } labelsToBuild.get().insert(formula.get()->getLabel()); } } template void DdPrismModelBuilder::Options::setTerminalStatesFromFormula(storm::logic::Formula const& formula) { if (formula.isAtomicExpressionFormula()) { terminalStates = formula.asAtomicExpressionFormula().getExpression(); } else if (formula.isAtomicLabelFormula()) { terminalStates = formula.asAtomicLabelFormula().getLabel(); } else if (formula.isEventuallyFormula()) { storm::logic::Formula const& sub = formula.asEventuallyFormula().getSubformula(); if (sub.isAtomicExpressionFormula() || sub.isAtomicLabelFormula()) { this->setTerminalStatesFromFormula(sub); } } else if (formula.isUntilFormula()) { storm::logic::Formula const& right = formula.asUntilFormula().getRightSubformula(); if (right.isAtomicExpressionFormula() || right.isAtomicLabelFormula()) { this->setTerminalStatesFromFormula(right); } storm::logic::Formula const& left = formula.asUntilFormula().getLeftSubformula(); if (left.isAtomicExpressionFormula()) { negatedTerminalStates = left.asAtomicExpressionFormula().getExpression(); } else if (left.isAtomicLabelFormula()) { negatedTerminalStates = left.asAtomicLabelFormula().getLabel(); } } else if (formula.isProbabilityOperatorFormula()) { storm::logic::Formula const& sub = formula.asProbabilityOperatorFormula().getSubformula(); if (sub.isEventuallyFormula() || sub.isUntilFormula()) { this->setTerminalStatesFromFormula(sub); } } } template void DdPrismModelBuilder::Options::addConstantDefinitionsFromString(storm::prism::Program const& program, std::string const& constantDefinitionString) { std::map newConstantDefinitions = storm::utility::prism::parseConstantDefinitionString(program, constantDefinitionString); // If there is at least one constant that is defined, and the constant definition map does not yet exist, // we need to create it. if (!constantDefinitions && !newConstantDefinitions.empty()) { constantDefinitions = std::map(); } // Now insert all the entries that need to be defined. for (auto const& entry : newConstantDefinitions) { constantDefinitions.get().insert(entry); } } template struct DdPrismModelBuilder::SystemResult { SystemResult(storm::dd::Add const& allTransitionsDd, DdPrismModelBuilder::ModuleDecisionDiagram const& globalModule, storm::dd::Add const& stateActionDd) : allTransitionsDd(allTransitionsDd), globalModule(globalModule), stateActionDd(stateActionDd) { // Intentionally left empty. } storm::dd::Add allTransitionsDd; typename DdPrismModelBuilder::ModuleDecisionDiagram globalModule; storm::dd::Add stateActionDd; }; template typename DdPrismModelBuilder::UpdateDecisionDiagram DdPrismModelBuilder::createUpdateDecisionDiagram(GenerationInformation& generationInfo, storm::prism::Module const& module, storm::dd::Add const& guard, storm::prism::Update const& update) { storm::dd::Add updateDd = generationInfo.manager->template getAddOne(); STORM_LOG_TRACE("Translating update " << update); // Iterate over all assignments (boolean and integer) and build the DD for it. std::vector assignments = update.getAssignments(); std::set assignedVariables; for (auto const& assignment : assignments) { // Record the variable as being written. STORM_LOG_TRACE("Assigning to variable " << generationInfo.variableToRowMetaVariableMap->at(assignment.getVariable()).getName()); assignedVariables.insert(assignment.getVariable()); // Translate the written variable. auto const& primedMetaVariable = generationInfo.variableToColumnMetaVariableMap->at(assignment.getVariable()); storm::dd::Add writtenVariable = generationInfo.manager->template getIdentity(primedMetaVariable); // Translate the expression that is being assigned. storm::dd::Add updateExpression = generationInfo.rowExpressionAdapter->translateExpression(assignment.getExpression()); // Combine the update expression with the guard. storm::dd::Add result = updateExpression * guard; // Combine the variable and the assigned expression. result = result.equals(writtenVariable).template toAdd(); result *= guard; // Restrict the transitions to the range of the written variable. result = result * generationInfo.manager->getRange(primedMetaVariable).template toAdd(); updateDd *= result; } // Compute the set of assigned global variables. std::set assignedGlobalVariables; std::set_intersection(assignedVariables.begin(), assignedVariables.end(), generationInfo.allGlobalVariables.begin(), generationInfo.allGlobalVariables.end(), std::inserter(assignedGlobalVariables, assignedGlobalVariables.begin())); // All unassigned boolean variables need to keep their value. for (storm::prism::BooleanVariable const& booleanVariable : module.getBooleanVariables()) { if (assignedVariables.find(booleanVariable.getExpressionVariable()) == assignedVariables.end()) { STORM_LOG_TRACE("Multiplying identity of variable " << booleanVariable.getName()); updateDd *= generationInfo.variableToIdentityMap.at(booleanVariable.getExpressionVariable()); } } // All unassigned integer variables need to keep their value. for (storm::prism::IntegerVariable const& integerVariable : module.getIntegerVariables()) { if (assignedVariables.find(integerVariable.getExpressionVariable()) == assignedVariables.end()) { STORM_LOG_TRACE("Multiplying identity of variable " << integerVariable.getName()); updateDd *= generationInfo.variableToIdentityMap.at(integerVariable.getExpressionVariable()); } } return UpdateDecisionDiagram(updateDd, assignedGlobalVariables); } template typename DdPrismModelBuilder::ActionDecisionDiagram DdPrismModelBuilder::createCommandDecisionDiagram(GenerationInformation& generationInfo, storm::prism::Module const& module, storm::prism::Command const& command) { STORM_LOG_TRACE("Translating guard " << command.getGuardExpression()); storm::dd::Add guard = generationInfo.rowExpressionAdapter->translateExpression(command.getGuardExpression()) * generationInfo.moduleToRangeMap[module.getName()]; STORM_LOG_WARN_COND(!guard.isZero(), "The guard '" << command.getGuardExpression() << "' is unsatisfiable."); if (!guard.isZero()) { // Create the DDs representing the individual updates. std::vector updateResults; for (storm::prism::Update const& update : command.getUpdates()) { updateResults.push_back(createUpdateDecisionDiagram(generationInfo, module, guard, update)); STORM_LOG_WARN_COND(!updateResults.back().updateDd.isZero(), "Update '" << update << "' does not have any effect."); } // Start by gathering all variables that were written in at least one update. std::set globalVariablesInSomeUpdate; // If the command is labeled, we have to analyze which portion of the global variables was written by // any of the updates and make all update results equal w.r.t. this set. If the command is not labeled, // we can already multiply the identities of all global variables. if (command.isLabeled()) { std::for_each(updateResults.begin(), updateResults.end(), [&globalVariablesInSomeUpdate] (UpdateDecisionDiagram const& update) { globalVariablesInSomeUpdate.insert(update.assignedGlobalVariables.begin(), update.assignedGlobalVariables.end()); } ); } else { globalVariablesInSomeUpdate = generationInfo.allGlobalVariables; } // Then, multiply the missing identities. for (auto& updateResult : updateResults) { std::set missingIdentities; std::set_difference(globalVariablesInSomeUpdate.begin(), globalVariablesInSomeUpdate.end(), updateResult.assignedGlobalVariables.begin(), updateResult.assignedGlobalVariables.end(), std::inserter(missingIdentities, missingIdentities.begin())); for (auto const& variable : missingIdentities) { STORM_LOG_TRACE("Multiplying identity for variable " << variable.getName() << "[" << variable.getIndex() << "] to update."); updateResult.updateDd *= generationInfo.variableToIdentityMap.at(variable); } } // Now combine the update DDs to the command DD. storm::dd::Add commandDd = generationInfo.manager->template getAddZero(); auto updateResultsIt = updateResults.begin(); for (auto updateIt = command.getUpdates().begin(), updateIte = command.getUpdates().end(); updateIt != updateIte; ++updateIt, ++updateResultsIt) { storm::dd::Add probabilityDd = generationInfo.rowExpressionAdapter->translateExpression(updateIt->getLikelihoodExpression()); commandDd += updateResultsIt->updateDd * probabilityDd; } return ActionDecisionDiagram(guard, guard * commandDd, globalVariablesInSomeUpdate); } else { return ActionDecisionDiagram(*generationInfo.manager); } } template typename DdPrismModelBuilder::ActionDecisionDiagram DdPrismModelBuilder::createActionDecisionDiagram(GenerationInformation& generationInfo, storm::prism::Module const& module, uint_fast64_t synchronizationActionIndex, uint_fast64_t nondeterminismVariableOffset) { std::vector commandDds; for (storm::prism::Command const& command : module.getCommands()) { // Determine whether the command is relevant for the selected action. bool relevant = (synchronizationActionIndex == 0 && !command.isLabeled()) || (synchronizationActionIndex && command.isLabeled() && command.getActionIndex() == synchronizationActionIndex); if (!relevant) { continue; } STORM_LOG_TRACE("Translating command " << command); // At this point, the command is known to be relevant for the action. commandDds.push_back(createCommandDecisionDiagram(generationInfo, module, command)); } ActionDecisionDiagram result(*generationInfo.manager); if (!commandDds.empty()) { switch (generationInfo.program.getModelType()){ case storm::prism::Program::ModelType::DTMC: case storm::prism::Program::ModelType::CTMC: result = combineCommandsToActionMarkovChain(generationInfo, commandDds); break; case storm::prism::Program::ModelType::MDP: result = combineCommandsToActionMDP(generationInfo, commandDds, nondeterminismVariableOffset); break; default: STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Cannot translate model of this type."); } } return result; } template std::set DdPrismModelBuilder::equalizeAssignedGlobalVariables(GenerationInformation const& generationInfo, ActionDecisionDiagram& action1, ActionDecisionDiagram& action2) { // Start by gathering all variables that were written in at least one action DD. std::set globalVariablesInActionDd; std::set_union(action1.assignedGlobalVariables.begin(), action1.assignedGlobalVariables.end(), action2.assignedGlobalVariables.begin(), action2.assignedGlobalVariables.end(), std::inserter(globalVariablesInActionDd, globalVariablesInActionDd.begin())); std::set missingIdentitiesInAction1; std::set_difference(globalVariablesInActionDd.begin(), globalVariablesInActionDd.end(), action1.assignedGlobalVariables.begin(), action1.assignedGlobalVariables.end(), std::inserter(missingIdentitiesInAction1, missingIdentitiesInAction1.begin())); for (auto const& variable : missingIdentitiesInAction1) { action1.transitionsDd *= generationInfo.variableToIdentityMap.at(variable); } std::set missingIdentitiesInAction2; std::set_difference(globalVariablesInActionDd.begin(), globalVariablesInActionDd.end(), action1.assignedGlobalVariables.begin(), action1.assignedGlobalVariables.end(), std::inserter(missingIdentitiesInAction2, missingIdentitiesInAction2.begin())); for (auto const& variable : missingIdentitiesInAction2) { action2.transitionsDd *= generationInfo.variableToIdentityMap.at(variable); } return globalVariablesInActionDd; } template std::set DdPrismModelBuilder::equalizeAssignedGlobalVariables(GenerationInformation const& generationInfo, std::vector& actionDds) { // Start by gathering all variables that were written in at least one action DD. std::set globalVariablesInActionDd; for (auto const& commandDd : actionDds) { globalVariablesInActionDd.insert(commandDd.assignedGlobalVariables.begin(), commandDd.assignedGlobalVariables.end()); } STORM_LOG_TRACE("Equalizing assigned global variables."); // Then multiply the transitions of each action with the missing identities. for (auto& actionDd : actionDds) { STORM_LOG_TRACE("Equalizing next action."); std::set missingIdentities; std::set_difference(globalVariablesInActionDd.begin(), globalVariablesInActionDd.end(), actionDd.assignedGlobalVariables.begin(), actionDd.assignedGlobalVariables.end(), std::inserter(missingIdentities, missingIdentities.begin())); for (auto const& variable : missingIdentities) { STORM_LOG_TRACE("Multiplying identity of variable " << variable.getName() << "."); actionDd.transitionsDd *= generationInfo.variableToIdentityMap.at(variable); } } return globalVariablesInActionDd; } template typename DdPrismModelBuilder::ActionDecisionDiagram DdPrismModelBuilder::combineCommandsToActionMarkovChain(GenerationInformation& generationInfo, std::vector& commandDds) { storm::dd::Add allGuards = generationInfo.manager->template getAddZero(); storm::dd::Add allCommands = generationInfo.manager->template getAddZero(); storm::dd::Add temporary; // Make all command DDs assign to the same global variables. std::set assignedGlobalVariables = equalizeAssignedGlobalVariables(generationInfo, commandDds); // Then combine the commands to the full action DD and multiply missing identities along the way. for (auto& commandDd : commandDds) { // Check for overlapping guards. temporary = commandDd.guardDd * allGuards; // Issue a warning if there are overlapping guards in a non-CTMC model. STORM_LOG_WARN_COND(temporary.isZero() || generationInfo.program.getModelType() == storm::prism::Program::ModelType::CTMC, "Guard of a command overlaps with previous guards."); allGuards += commandDd.guardDd; allCommands += commandDd.guardDd * commandDd.transitionsDd; } return ActionDecisionDiagram(allGuards, allCommands, assignedGlobalVariables); } template storm::dd::Add DdPrismModelBuilder::encodeChoice(GenerationInformation& generationInfo, uint_fast64_t nondeterminismVariableOffset, uint_fast64_t numberOfBinaryVariables, int_fast64_t value) { storm::dd::Add result = generationInfo.manager->template getAddZero(); STORM_LOG_TRACE("Encoding " << value << " with " << numberOfBinaryVariables << " binary variable(s) starting from offset " << nondeterminismVariableOffset << "."); std::map metaVariableNameToValueMap; for (uint_fast64_t i = nondeterminismVariableOffset; i < nondeterminismVariableOffset + numberOfBinaryVariables; ++i) { if (value & (1ull << (numberOfBinaryVariables - i - 1))) { metaVariableNameToValueMap.emplace(generationInfo.nondeterminismMetaVariables[i], 1); } else { metaVariableNameToValueMap.emplace(generationInfo.nondeterminismMetaVariables[i], 0); } } result.setValue(metaVariableNameToValueMap, 1); return result; } template typename DdPrismModelBuilder::ActionDecisionDiagram DdPrismModelBuilder::combineCommandsToActionMDP(GenerationInformation& generationInfo, std::vector& commandDds, uint_fast64_t nondeterminismVariableOffset) { storm::dd::Bdd allGuards = generationInfo.manager->getBddZero(); storm::dd::Add allCommands = generationInfo.manager->template getAddZero(); // Make all command DDs assign to the same global variables. std::set assignedGlobalVariables = equalizeAssignedGlobalVariables(generationInfo, commandDds); // Sum all guards, so we can read off the maximal number of nondeterministic choices in any given state. storm::dd::Add sumOfGuards = generationInfo.manager->template getAddZero(); for (auto const& commandDd : commandDds) { sumOfGuards += commandDd.guardDd; allGuards |= commandDd.guardDd.toBdd(); } uint_fast64_t maxChoices = static_cast(sumOfGuards.getMax()); STORM_LOG_TRACE("Found " << maxChoices << " local choices."); // Depending on the maximal number of nondeterminstic choices, we need to use some variables to encode the nondeterminism. if (maxChoices == 0) { return ActionDecisionDiagram(*generationInfo.manager); } else if (maxChoices == 1) { // Sum up all commands. for (auto const& commandDd : commandDds) { allCommands += commandDd.transitionsDd; } return ActionDecisionDiagram(sumOfGuards, allCommands, assignedGlobalVariables); } else { // Calculate number of required variables to encode the nondeterminism. uint_fast64_t numberOfBinaryVariables = static_cast(std::ceil(storm::utility::math::log2(maxChoices))); storm::dd::Bdd equalsNumberOfChoicesDd; std::vector> choiceDds(maxChoices, generationInfo.manager->template getAddZero()); std::vector> remainingDds(maxChoices, generationInfo.manager->getBddZero()); for (uint_fast64_t currentChoices = 1; currentChoices <= maxChoices; ++currentChoices) { // Determine the set of states with exactly currentChoices choices. equalsNumberOfChoicesDd = sumOfGuards.equals(generationInfo.manager->getConstant(static_cast(currentChoices))); // If there is no such state, continue with the next possible number of choices. if (equalsNumberOfChoicesDd.isZero()) { continue; } // Reset the previously used intermediate storage. for (uint_fast64_t j = 0; j < currentChoices; ++j) { choiceDds[j] = generationInfo.manager->template getAddZero(); remainingDds[j] = equalsNumberOfChoicesDd; } for (std::size_t j = 0; j < commandDds.size(); ++j) { // Check if command guard overlaps with equalsNumberOfChoicesDd. That is, there are states with exactly currentChoices // choices such that one outgoing choice is given by the j-th command. storm::dd::Bdd guardChoicesIntersection = commandDds[j].guardDd.toBdd() && equalsNumberOfChoicesDd; // If there is no such state, continue with the next command. if (guardChoicesIntersection.isZero()) { continue; } // Split the currentChoices nondeterministic choices. for (uint_fast64_t k = 0; k < currentChoices; ++k) { // Calculate the overlapping part of command guard and the remaining DD. storm::dd::Bdd remainingGuardChoicesIntersection = guardChoicesIntersection && remainingDds[k]; // Check if we can add some overlapping parts to the current index. if (!remainingGuardChoicesIntersection.isZero()) { // Remove overlapping parts from the remaining DD. remainingDds[k] = remainingDds[k] && !remainingGuardChoicesIntersection; // Combine the overlapping part of the guard with command updates and add it to the resulting DD. choiceDds[k] += remainingGuardChoicesIntersection.template toAdd() * commandDds[j].transitionsDd; } // Remove overlapping parts from the command guard DD guardChoicesIntersection = guardChoicesIntersection && !remainingGuardChoicesIntersection; // If the guard DD has become equivalent to false, we can stop here. if (guardChoicesIntersection.isZero()) { break; } } } // Add the meta variables that encode the nondeterminisim to the different choices. for (uint_fast64_t j = 0; j < currentChoices; ++j) { allCommands += encodeChoice(generationInfo, nondeterminismVariableOffset, numberOfBinaryVariables, j) * choiceDds[j]; } // Delete currentChoices out of overlapping DD sumOfGuards = sumOfGuards * (!equalsNumberOfChoicesDd).template toAdd(); } return ActionDecisionDiagram(allGuards.template toAdd(), allCommands, assignedGlobalVariables, nondeterminismVariableOffset + numberOfBinaryVariables); } } template typename DdPrismModelBuilder::ActionDecisionDiagram DdPrismModelBuilder::combineSynchronizingActions(GenerationInformation const& generationInfo, ActionDecisionDiagram const& action1, ActionDecisionDiagram const& action2) { std::set assignedGlobalVariables; std::set_union(action1.assignedGlobalVariables.begin(), action1.assignedGlobalVariables.end(), action2.assignedGlobalVariables.begin(), action2.assignedGlobalVariables.end(), std::inserter(assignedGlobalVariables, assignedGlobalVariables.begin())); return ActionDecisionDiagram(action1.guardDd * action2.guardDd, action1.transitionsDd * action2.transitionsDd, assignedGlobalVariables, std::max(action1.numberOfUsedNondeterminismVariables, action2.numberOfUsedNondeterminismVariables)); } template typename DdPrismModelBuilder::ActionDecisionDiagram DdPrismModelBuilder::combineUnsynchronizedActions(GenerationInformation const& generationInfo, ActionDecisionDiagram& action1, ActionDecisionDiagram& action2, storm::dd::Add const& identityDd1, storm::dd::Add const& identityDd2) { // First extend the action DDs by the other identities. STORM_LOG_TRACE("Multiplying identities to combine unsynchronized actions."); action1.transitionsDd = action1.transitionsDd * identityDd2; action2.transitionsDd = action2.transitionsDd * identityDd1; // Then combine the extended action DDs. return combineUnsynchronizedActions(generationInfo, action1, action2); } template typename DdPrismModelBuilder::ActionDecisionDiagram DdPrismModelBuilder::combineUnsynchronizedActions(GenerationInformation const& generationInfo, ActionDecisionDiagram& action1, ActionDecisionDiagram& action2) { STORM_LOG_TRACE("Combining unsynchronized actions."); // Make both action DDs write to the same global variables. std::set assignedGlobalVariables = equalizeAssignedGlobalVariables(generationInfo, action1, action2); if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::DTMC || generationInfo.program.getModelType() == storm::prism::Program::ModelType::CTMC) { return ActionDecisionDiagram(action1.guardDd + action2.guardDd, action1.transitionsDd + action2.transitionsDd, assignedGlobalVariables, 0); } else if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { if (action1.transitionsDd.isZero()) { return ActionDecisionDiagram(action2.guardDd, action2.transitionsDd, assignedGlobalVariables, action2.numberOfUsedNondeterminismVariables); } else if (action2.transitionsDd.isZero()) { return ActionDecisionDiagram(action1.guardDd, action1.transitionsDd, assignedGlobalVariables, action1.numberOfUsedNondeterminismVariables); } // Bring both choices to the same number of variables that encode the nondeterminism. uint_fast64_t numberOfUsedNondeterminismVariables = std::max(action1.numberOfUsedNondeterminismVariables, action2.numberOfUsedNondeterminismVariables); if (action1.numberOfUsedNondeterminismVariables > action2.numberOfUsedNondeterminismVariables) { storm::dd::Add nondeterminismEncoding = generationInfo.manager->template getAddOne(); for (uint_fast64_t i = action2.numberOfUsedNondeterminismVariables; i < action1.numberOfUsedNondeterminismVariables; ++i) { nondeterminismEncoding *= generationInfo.manager->getEncoding(generationInfo.nondeterminismMetaVariables[i], 0).template toAdd(); } action2.transitionsDd *= nondeterminismEncoding; } else if (action2.numberOfUsedNondeterminismVariables > action1.numberOfUsedNondeterminismVariables) { storm::dd::Add nondeterminismEncoding = generationInfo.manager->template getAddOne(); for (uint_fast64_t i = action1.numberOfUsedNondeterminismVariables; i < action2.numberOfUsedNondeterminismVariables; ++i) { nondeterminismEncoding *= generationInfo.manager->getEncoding(generationInfo.nondeterminismMetaVariables[i], 0).template toAdd(); } action1.transitionsDd *= nondeterminismEncoding; } // Add a new variable that resolves the nondeterminism between the two choices. storm::dd::Add combinedTransitions = generationInfo.manager->getEncoding(generationInfo.nondeterminismMetaVariables[numberOfUsedNondeterminismVariables], 1).ite(action2.transitionsDd, action1.transitionsDd); return ActionDecisionDiagram((action1.guardDd.toBdd() || action2.guardDd.toBdd()).template toAdd(), combinedTransitions, assignedGlobalVariables, numberOfUsedNondeterminismVariables + 1); } else { STORM_LOG_THROW(false, storm::exceptions::InvalidStateException, "Illegal model type."); } } template typename DdPrismModelBuilder::ModuleDecisionDiagram DdPrismModelBuilder::createModuleDecisionDiagram(GenerationInformation& generationInfo, storm::prism::Module const& module, std::map const& synchronizingActionToOffsetMap) { // Start by creating the action DD for the independent action. ActionDecisionDiagram independentActionDd = createActionDecisionDiagram(generationInfo, module, 0, 0); uint_fast64_t numberOfUsedNondeterminismVariables = independentActionDd.numberOfUsedNondeterminismVariables; // Create module DD for all synchronizing actions of the module. std::map actionIndexToDdMap; for (auto const& actionIndex : module.getSynchronizingActionIndices()) { STORM_LOG_TRACE("Creating DD for action '" << actionIndex << "'."); ActionDecisionDiagram tmp = createActionDecisionDiagram(generationInfo, module, actionIndex, synchronizingActionToOffsetMap.at(actionIndex)); numberOfUsedNondeterminismVariables = std::max(numberOfUsedNondeterminismVariables, tmp.numberOfUsedNondeterminismVariables); actionIndexToDdMap.emplace(actionIndex, tmp); } return ModuleDecisionDiagram(independentActionDd, actionIndexToDdMap, generationInfo.moduleToIdentityMap.at(module.getName()), numberOfUsedNondeterminismVariables); } template storm::dd::Add DdPrismModelBuilder::getSynchronizationDecisionDiagram(GenerationInformation& generationInfo, uint_fast64_t actionIndex) { storm::dd::Add synchronization = generationInfo.manager->template getAddOne(); if (actionIndex != 0) { for (uint_fast64_t i = 0; i < generationInfo.synchronizationMetaVariables.size(); ++i) { if ((actionIndex - 1) == i) { synchronization *= generationInfo.manager->getEncoding(generationInfo.synchronizationMetaVariables[i], 1).template toAdd(); } else { synchronization *= generationInfo.manager->getEncoding(generationInfo.synchronizationMetaVariables[i], 0).template toAdd(); } } } else { for (uint_fast64_t i = 0; i < generationInfo.synchronizationMetaVariables.size(); ++i) { synchronization *= generationInfo.manager->getEncoding(generationInfo.synchronizationMetaVariables[i], 0).template toAdd(); } } return synchronization; } template storm::dd::Add DdPrismModelBuilder::createSystemFromModule(GenerationInformation& generationInfo, ModuleDecisionDiagram const& module) { // If the model is an MDP, we need to encode the nondeterminism using additional variables. if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { storm::dd::Add result = generationInfo.manager->template getAddZero(); // First, determine the highest number of nondeterminism variables that is used in any action and make // all actions use the same amout of nondeterminism variables. uint_fast64_t numberOfUsedNondeterminismVariables = module.numberOfUsedNondeterminismVariables; // Compute missing global variable identities in independent action. std::set missingIdentities; std::set_difference(generationInfo.allGlobalVariables.begin(), generationInfo.allGlobalVariables.end(), module.independentAction.assignedGlobalVariables.begin(), module.independentAction.assignedGlobalVariables.end(), std::inserter(missingIdentities, missingIdentities.begin())); storm::dd::Add identityEncoding = generationInfo.manager->template getAddOne(); for (auto const& variable : missingIdentities) { STORM_LOG_TRACE("Multiplying identity of global variable " << variable.getName() << " to independent action."); identityEncoding *= generationInfo.variableToIdentityMap.at(variable); } // Add variables to independent action DD. storm::dd::Add nondeterminismEncoding = generationInfo.manager->template getAddOne(); for (uint_fast64_t i = module.independentAction.numberOfUsedNondeterminismVariables; i < numberOfUsedNondeterminismVariables; ++i) { nondeterminismEncoding *= generationInfo.manager->getEncoding(generationInfo.nondeterminismMetaVariables[i], 0).template toAdd(); } result = identityEncoding * module.independentAction.transitionsDd * nondeterminismEncoding; // Add variables to synchronized action DDs. std::map> synchronizingActionToDdMap; for (auto const& synchronizingAction : module.synchronizingActionToDecisionDiagramMap) { // Compute missing global variable identities in synchronizing actions. missingIdentities = std::set(); std::set_difference(generationInfo.allGlobalVariables.begin(), generationInfo.allGlobalVariables.end(), synchronizingAction.second.assignedGlobalVariables.begin(), synchronizingAction.second.assignedGlobalVariables.end(), std::inserter(missingIdentities, missingIdentities.begin())); identityEncoding = generationInfo.manager->template getAddOne(); for (auto const& variable : missingIdentities) { STORM_LOG_TRACE("Multiplying identity of global variable " << variable.getName() << " to synchronizing action '" << synchronizingAction.first << "'."); identityEncoding *= generationInfo.variableToIdentityMap.at(variable); } nondeterminismEncoding = generationInfo.manager->template getAddOne(); for (uint_fast64_t i = synchronizingAction.second.numberOfUsedNondeterminismVariables; i < numberOfUsedNondeterminismVariables; ++i) { nondeterminismEncoding *= generationInfo.manager->getEncoding(generationInfo.nondeterminismMetaVariables[i], 0).template toAdd(); } synchronizingActionToDdMap.emplace(synchronizingAction.first, identityEncoding * synchronizingAction.second.transitionsDd * nondeterminismEncoding); } // Add variables for synchronization. result *= getSynchronizationDecisionDiagram(generationInfo); for (auto& synchronizingAction : synchronizingActionToDdMap) { synchronizingAction.second *= getSynchronizationDecisionDiagram(generationInfo, synchronizingAction.first); } // Now, we can simply add all synchronizing actions to the result. for (auto const& synchronizingAction : synchronizingActionToDdMap) { result += synchronizingAction.second; } return result; } else if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::DTMC || generationInfo.program.getModelType() == storm::prism::Program::ModelType::CTMC) { // Simply add all actions, but make sure to include the missing global variable identities. // Compute missing global variable identities in independent action. std::set missingIdentities; std::set_difference(generationInfo.allGlobalVariables.begin(), generationInfo.allGlobalVariables.end(), module.independentAction.assignedGlobalVariables.begin(), module.independentAction.assignedGlobalVariables.end(), std::inserter(missingIdentities, missingIdentities.begin())); storm::dd::Add identityEncoding = generationInfo.manager->template getAddOne(); for (auto const& variable : missingIdentities) { STORM_LOG_TRACE("Multiplying identity of global variable " << variable.getName() << " to independent action."); identityEncoding *= generationInfo.variableToIdentityMap.at(variable); } storm::dd::Add result = identityEncoding * module.independentAction.transitionsDd; for (auto const& synchronizingAction : module.synchronizingActionToDecisionDiagramMap) { // Compute missing global variable identities in synchronizing actions. missingIdentities = std::set(); std::set_difference(generationInfo.allGlobalVariables.begin(), generationInfo.allGlobalVariables.end(), synchronizingAction.second.assignedGlobalVariables.begin(), synchronizingAction.second.assignedGlobalVariables.end(), std::inserter(missingIdentities, missingIdentities.begin())); identityEncoding = generationInfo.manager->template getAddOne(); for (auto const& variable : missingIdentities) { STORM_LOG_TRACE("Multiplying identity of global variable " << variable.getName() << " to synchronizing action '" << synchronizingAction.first << "'."); identityEncoding *= generationInfo.variableToIdentityMap.at(variable); } result += identityEncoding * synchronizingAction.second.transitionsDd; } return result; } else { STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Illegal model type."); } } template typename DdPrismModelBuilder::SystemResult DdPrismModelBuilder::createSystemDecisionDiagram(GenerationInformation& generationInfo) { ModuleComposer composer(generationInfo); ModuleDecisionDiagram system = composer.compose(generationInfo.program.specifiesSystemComposition() ? generationInfo.program.getSystemCompositionConstruct().getSystemComposition() : *generationInfo.program.getDefaultSystemComposition()); storm::dd::Add result = createSystemFromModule(generationInfo, system); result.exportToDot("result_prism.dot"); std::cout << "nnz: " << result.getNonZeroCount() << std::endl; std::cout << "nodecnt: " << result.getNodeCount() << std::endl; std::cout << "meta var: " << std::endl; for (auto const& var : result.getContainedMetaVariables()) { std::cout << var.getName() << std::endl; } std::cout << std::endl; // Create an auxiliary DD that is used later during the construction of reward models. storm::dd::Add stateActionDd = result.sumAbstract(generationInfo.columnMetaVariables); // For DTMCs, we normalize each row to 1 (to account for non-determinism). if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::DTMC) { result = result / stateActionDd; } else if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { // For MDPs, we need to throw away the nondeterminism variables from the generation information that // were never used. for (uint_fast64_t index = system.numberOfUsedNondeterminismVariables; index < generationInfo.nondeterminismMetaVariables.size(); ++index) { generationInfo.allNondeterminismVariables.erase(generationInfo.nondeterminismMetaVariables[index]); } generationInfo.nondeterminismMetaVariables.resize(system.numberOfUsedNondeterminismVariables); } return SystemResult(result, system, stateActionDd); } template storm::models::symbolic::StandardRewardModel DdPrismModelBuilder::createRewardModelDecisionDiagrams(GenerationInformation& generationInfo, storm::prism::RewardModel const& rewardModel, ModuleDecisionDiagram const& globalModule, storm::dd::Add const& transitionMatrix, storm::dd::Add const& reachableStatesAdd, storm::dd::Add const& stateActionDd) { // Start by creating the state reward vector. boost::optional> stateRewards; if (rewardModel.hasStateRewards()) { stateRewards = generationInfo.manager->template getAddZero(); for (auto const& stateReward : rewardModel.getStateRewards()) { storm::dd::Add states = generationInfo.rowExpressionAdapter->translateExpression(stateReward.getStatePredicateExpression()); storm::dd::Add rewards = generationInfo.rowExpressionAdapter->translateExpression(stateReward.getRewardValueExpression()); // Restrict the rewards to those states that satisfy the condition. rewards = reachableStatesAdd * states * rewards; // Perform some sanity checks. STORM_LOG_WARN_COND(rewards.getMin() >= 0, "The reward model assigns negative rewards to some states."); STORM_LOG_WARN_COND(!rewards.isZero(), "The reward model does not assign any non-zero rewards."); // Add the rewards to the global state reward vector. stateRewards.get() += rewards; } } // Next, build the state-action reward vector. boost::optional> stateActionRewards; if (rewardModel.hasStateActionRewards()) { stateActionRewards = generationInfo.manager->template getAddZero(); for (auto const& stateActionReward : rewardModel.getStateActionRewards()) { storm::dd::Add states = generationInfo.rowExpressionAdapter->translateExpression(stateActionReward.getStatePredicateExpression()); storm::dd::Add rewards = generationInfo.rowExpressionAdapter->translateExpression(stateActionReward.getRewardValueExpression()); storm::dd::Add synchronization = generationInfo.manager->template getAddOne(); if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { synchronization = getSynchronizationDecisionDiagram(generationInfo, stateActionReward.getActionIndex()); } ActionDecisionDiagram const& actionDd = stateActionReward.isLabeled() ? globalModule.synchronizingActionToDecisionDiagramMap.at(stateActionReward.getActionIndex()) : globalModule.independentAction; states *= actionDd.guardDd * reachableStatesAdd; storm::dd::Add stateActionRewardDd = synchronization * states * rewards; // If we are building the state-action rewards for an MDP, we need to make sure that the encoding // of the nondeterminism is present in the reward vector, so we ne need to multiply it with the // legal state-actions. if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { stateActionRewardDd *= stateActionDd; } else if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::CTMC) { // For CTMCs, we need to multiply the entries with the exit rate of the corresponding action. stateActionRewardDd *= actionDd.transitionsDd.sumAbstract(generationInfo.columnMetaVariables); } // Perform some sanity checks. STORM_LOG_WARN_COND(stateActionRewardDd.getMin() >= 0, "The reward model assigns negative rewards to some states."); STORM_LOG_WARN_COND(!stateActionRewardDd.isZero(), "The reward model does not assign any non-zero rewards."); // Add the rewards to the global transition reward matrix. stateActionRewards.get() += stateActionRewardDd; } // Scale state-action rewards for DTMCs and CTMCs. if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::DTMC || generationInfo.program.getModelType() == storm::prism::Program::ModelType::CTMC) { stateActionRewards.get() /= stateActionDd; } } // Then build the transition reward matrix. boost::optional> transitionRewards; if (rewardModel.hasTransitionRewards()) { transitionRewards = generationInfo.manager->template getAddZero(); for (auto const& transitionReward : rewardModel.getTransitionRewards()) { storm::dd::Add sourceStates = generationInfo.rowExpressionAdapter->translateExpression(transitionReward.getSourceStatePredicateExpression()); storm::dd::Add targetStates = generationInfo.rowExpressionAdapter->translateExpression(transitionReward.getTargetStatePredicateExpression()); storm::dd::Add rewards = generationInfo.rowExpressionAdapter->translateExpression(transitionReward.getRewardValueExpression()); storm::dd::Add synchronization = generationInfo.manager->template getAddOne(); storm::dd::Add transitions; if (transitionReward.isLabeled()) { if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { synchronization = getSynchronizationDecisionDiagram(generationInfo, transitionReward.getActionIndex()); } transitions = globalModule.synchronizingActionToDecisionDiagramMap.at(transitionReward.getActionIndex()).transitionsDd; } else { if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { synchronization = getSynchronizationDecisionDiagram(generationInfo); } transitions = globalModule.independentAction.transitionsDd; } storm::dd::Add transitionRewardDd = synchronization * sourceStates * targetStates * rewards; if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::DTMC) { // For DTMCs we need to keep the weighting for the scaling that follows. transitionRewardDd = transitions * transitionRewardDd; } else { // For all other model types, we do not scale the rewards. transitionRewardDd = transitions.notZero().template toAdd() * transitionRewardDd; } // Perform some sanity checks. STORM_LOG_WARN_COND(transitionRewardDd.getMin() >= 0, "The reward model assigns negative rewards to some states."); STORM_LOG_WARN_COND(!transitionRewardDd.isZero(), "The reward model does not assign any non-zero rewards."); // Add the rewards to the global transition reward matrix. transitionRewards.get() += transitionRewardDd; } // Scale transition rewards for DTMCs. if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::DTMC) { transitionRewards.get() /= stateActionDd; } } return storm::models::symbolic::StandardRewardModel(stateRewards, stateActionRewards, transitionRewards); } template storm::prism::Program const& DdPrismModelBuilder::getTranslatedProgram() const { return preparedProgram.get(); } template std::shared_ptr> DdPrismModelBuilder::translateProgram(storm::prism::Program const& program, Options const& options) { if (options.constantDefinitions) { preparedProgram = program.defineUndefinedConstants(options.constantDefinitions.get()); } else { preparedProgram = program; } if (preparedProgram->hasUndefinedConstants()) { std::vector> undefinedConstants = preparedProgram->getUndefinedConstants(); std::stringstream stream; bool printComma = false; for (auto const& constant : undefinedConstants) { if (printComma) { stream << ", "; } else { printComma = true; } stream << constant.get().getName() << " (" << constant.get().getType() << ")"; } stream << "."; STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Program still contains these undefined constants: " + stream.str()); } preparedProgram = preparedProgram->substituteConstants(); STORM_LOG_DEBUG("Building representation of program:" << std::endl << *preparedProgram << std::endl); // Start by initializing the structure used for storing all information needed during the model generation. // In particular, this creates the meta variables used to encode the model. GenerationInformation generationInfo(*preparedProgram); SystemResult system = createSystemDecisionDiagram(generationInfo); storm::dd::Add transitionMatrix = system.allTransitionsDd; ModuleDecisionDiagram const& globalModule = system.globalModule; storm::dd::Add stateActionDd = system.stateActionDd; // If we were asked to treat some states as terminal states, we cut away their transitions now. if (options.terminalStates || options.negatedTerminalStates) { std::map constantsSubstitution = preparedProgram->getConstantsSubstitution(); storm::dd::Bdd terminalStatesBdd = generationInfo.manager->getBddZero(); if (options.terminalStates) { storm::expressions::Expression terminalExpression; if (options.terminalStates.get().type() == typeid(storm::expressions::Expression)) { terminalExpression = boost::get(options.terminalStates.get()); } else { std::string const& labelName = boost::get(options.terminalStates.get()); terminalExpression = preparedProgram->getLabelExpression(labelName); } // If the expression refers to constants of the model, we need to substitute them. terminalExpression = terminalExpression.substitute(constantsSubstitution); STORM_LOG_TRACE("Making the states satisfying " << terminalExpression << " terminal."); terminalStatesBdd = generationInfo.rowExpressionAdapter->translateExpression(terminalExpression).toBdd(); } if (options.negatedTerminalStates) { storm::expressions::Expression negatedTerminalExpression; if (options.negatedTerminalStates.get().type() == typeid(storm::expressions::Expression)) { negatedTerminalExpression = boost::get(options.negatedTerminalStates.get()); } else { std::string const& labelName = boost::get(options.terminalStates.get()); negatedTerminalExpression = preparedProgram->getLabelExpression(labelName); } // If the expression refers to constants of the model, we need to substitute them. negatedTerminalExpression = negatedTerminalExpression.substitute(constantsSubstitution); STORM_LOG_TRACE("Making the states *not* satisfying " << negatedTerminalExpression << " terminal."); terminalStatesBdd |= !generationInfo.rowExpressionAdapter->translateExpression(negatedTerminalExpression).toBdd(); } transitionMatrix *= (!terminalStatesBdd).template toAdd(); } // Cut the transitions and rewards to the reachable fragment of the state space. storm::dd::Bdd initialStates = createInitialStatesDecisionDiagram(generationInfo); storm::dd::Bdd transitionMatrixBdd = transitionMatrix.notZero(); if (program.getModelType() == storm::prism::Program::ModelType::MDP) { transitionMatrixBdd = transitionMatrixBdd.existsAbstract(generationInfo.allNondeterminismVariables); } storm::dd::Bdd reachableStates = computeReachableStates(generationInfo, initialStates, transitionMatrixBdd); storm::dd::Add reachableStatesAdd = reachableStates.template toAdd(); transitionMatrix *= reachableStatesAdd; stateActionDd *= reachableStatesAdd; // Detect deadlocks and 1) fix them if requested 2) throw an error otherwise. storm::dd::Bdd statesWithTransition = transitionMatrixBdd.existsAbstract(generationInfo.columnMetaVariables); storm::dd::Add deadlockStates = (reachableStates && !statesWithTransition).template toAdd(); if (!deadlockStates.isZero()) { // If we need to fix deadlocks, we do so now. if (!storm::settings::getModule().isDontFixDeadlocksSet()) { STORM_LOG_INFO("Fixing deadlocks in " << deadlockStates.getNonZeroCount() << " states. The first three of these states are: "); uint_fast64_t count = 0; for (auto it = deadlockStates.begin(), ite = deadlockStates.end(); it != ite && count < 3; ++it, ++count) { STORM_LOG_INFO((*it).first.toPrettyString(generationInfo.rowMetaVariables) << std::endl); } if (program.getModelType() == storm::prism::Program::ModelType::DTMC) { // For DTMCs, we can simply add the identity of the global module for all deadlock states. transitionMatrix += deadlockStates * globalModule.identity; } else if (program.getModelType() == storm::prism::Program::ModelType::MDP) { // For MDPs, however, we need to select an action associated with the self-loop, if we do not // want to attach a lot of self-loops to the deadlock states. storm::dd::Add action = generationInfo.manager->template getAddOne(); std::for_each(generationInfo.allNondeterminismVariables.begin(), generationInfo.allNondeterminismVariables.end(), [&action, &generationInfo] (storm::expressions::Variable const& metaVariable) { action *= generationInfo.manager->template getIdentity(metaVariable); }); // Make sure that global variables do not change along the introduced self-loops. for (auto const& var : generationInfo.allGlobalVariables) { action *= generationInfo.variableToIdentityMap.at(var); } transitionMatrix += deadlockStates * globalModule.identity * action; } } else { STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "The model contains " << deadlockStates.getNonZeroCount() << " deadlock states. Please unset the option to not fix deadlocks, if you want to fix them automatically."); } } // Now build the reward models. std::vector> selectedRewardModels; // First, we make sure that all selected reward models actually exist. for (auto const& rewardModelName : options.rewardModelsToBuild) { STORM_LOG_THROW(rewardModelName.empty() || preparedProgram->hasRewardModel(rewardModelName), storm::exceptions::InvalidArgumentException, "Model does not possess a reward model with the name '" << rewardModelName << "'."); } for (auto const& rewardModel : preparedProgram->getRewardModels()) { if (options.buildAllRewardModels || options.rewardModelsToBuild.find(rewardModel.getName()) != options.rewardModelsToBuild.end()) { selectedRewardModels.push_back(rewardModel); } } // If no reward model was selected until now and a referenced reward model appears to be unique, we build // the only existing reward model (given that no explicit name was given for the referenced reward model). if (selectedRewardModels.empty() && preparedProgram->getNumberOfRewardModels() == 1 && options.rewardModelsToBuild.size() == 1 && *options.rewardModelsToBuild.begin() == "") { selectedRewardModels.push_back(preparedProgram->getRewardModel(0)); } std::unordered_map> rewardModels; for (auto const& rewardModel : selectedRewardModels) { rewardModels.emplace(rewardModel.get().getName(), createRewardModelDecisionDiagrams(generationInfo, rewardModel.get(), globalModule, transitionMatrix, reachableStatesAdd, stateActionDd)); } // Build the labels that can be accessed as a shortcut. std::map labelToExpressionMapping; for (auto const& label : preparedProgram->getLabels()) { labelToExpressionMapping.emplace(label.getName(), label.getStatePredicateExpression()); } if (program.getModelType() == storm::prism::Program::ModelType::DTMC) { return std::shared_ptr>(new storm::models::symbolic::Dtmc(generationInfo.manager, reachableStates, initialStates, transitionMatrix, generationInfo.rowMetaVariables, generationInfo.rowExpressionAdapter, generationInfo.columnMetaVariables, generationInfo.columnExpressionAdapter, generationInfo.rowColumnMetaVariablePairs, labelToExpressionMapping, rewardModels)); } else if (program.getModelType() == storm::prism::Program::ModelType::CTMC) { return std::shared_ptr>(new storm::models::symbolic::Ctmc(generationInfo.manager, reachableStates, initialStates, transitionMatrix, generationInfo.rowMetaVariables, generationInfo.rowExpressionAdapter, generationInfo.columnMetaVariables, generationInfo.columnExpressionAdapter, generationInfo.rowColumnMetaVariablePairs, labelToExpressionMapping, rewardModels)); } else if (program.getModelType() == storm::prism::Program::ModelType::MDP) { return std::shared_ptr>(new storm::models::symbolic::Mdp(generationInfo.manager, reachableStates, initialStates, transitionMatrix, generationInfo.rowMetaVariables, generationInfo.rowExpressionAdapter, generationInfo.columnMetaVariables, generationInfo.columnExpressionAdapter, generationInfo.rowColumnMetaVariablePairs, generationInfo.allNondeterminismVariables, labelToExpressionMapping, rewardModels)); } else { STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Invalid model type."); } } template storm::dd::Bdd DdPrismModelBuilder::createInitialStatesDecisionDiagram(GenerationInformation& generationInfo) { storm::dd::Bdd initialStates = generationInfo.rowExpressionAdapter->translateExpression(generationInfo.program.getInitialConstruct().getInitialStatesExpression()).toBdd(); for (auto const& metaVariable : generationInfo.rowMetaVariables) { initialStates &= generationInfo.manager->getRange(metaVariable); } return initialStates; } template storm::dd::Bdd DdPrismModelBuilder::computeReachableStates(GenerationInformation& generationInfo, storm::dd::Bdd const& initialStates, storm::dd::Bdd const& transitionBdd) { storm::dd::Bdd reachableStates = initialStates; // Perform the BFS to discover all reachable states. bool changed = true; uint_fast64_t iteration = 0; do { STORM_LOG_TRACE("Iteration " << iteration << " of reachability analysis."); changed = false; storm::dd::Bdd tmp = reachableStates.relationalProduct(transitionBdd, generationInfo.rowMetaVariables, generationInfo.columnMetaVariables); storm::dd::Bdd newReachableStates = tmp && (!reachableStates); // Check whether new states were indeed discovered. if (!newReachableStates.isZero()) { changed = true; } reachableStates |= newReachableStates; ++iteration; } while (changed); return reachableStates; } // Explicitly instantiate the symbolic model builder. template class DdPrismModelBuilder; template class DdPrismModelBuilder; } // namespace adapters } // namespace storm