#include "src/solver/GmmxxNondeterministicLinearEquationSolver.h" #include <utility> #include "src/settings/Settings.h" #include "src/adapters/GmmxxAdapter.h" #include "src/utility/vector.h" namespace storm { namespace solver { template<typename ValueType> GmmxxNondeterministicLinearEquationSolver<ValueType>::GmmxxNondeterministicLinearEquationSolver() { // Get the settings object to customize solving. storm::settings::Settings* settings = storm::settings::Settings::getInstance(); // Get appropriate settings. maximalNumberOfIterations = settings->getOptionByLongName("maxiter").getArgument(0).getValueAsUnsignedInteger(); precision = settings->getOptionByLongName("precision").getArgument(0).getValueAsDouble(); relative = !settings->isSet("absolute"); } template<typename ValueType> GmmxxNondeterministicLinearEquationSolver<ValueType>::GmmxxNondeterministicLinearEquationSolver(double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : precision(precision), relative(relative), maximalNumberOfIterations(maximalNumberOfIterations) { // Intentionally left empty. } template<typename ValueType> NondeterministicLinearEquationSolver<ValueType>* GmmxxNondeterministicLinearEquationSolver<ValueType>::clone() const { return new GmmxxNondeterministicLinearEquationSolver<ValueType>(*this); } template<typename ValueType> void GmmxxNondeterministicLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const { // Transform the transition probability matrix to the gmm++ format to use its arithmetic. std::unique_ptr<gmm::csr_matrix<ValueType>> gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<ValueType>(A); // Set up the environment for the power method. If scratch memory was not provided, we need to create it. bool multiplyResultMemoryProvided = true; if (multiplyResult == nullptr) { multiplyResult = new std::vector<ValueType>(A.getRowCount()); multiplyResultMemoryProvided = false; } std::vector<ValueType>* currentX = &x; bool xMemoryProvided = true; if (newX == nullptr) { newX = new std::vector<ValueType>(x.size()); xMemoryProvided = false; } uint_fast64_t iterations = 0; bool converged = false; // Keep track of which of the vectors for x is the auxiliary copy. std::vector<ValueType>* copyX = newX; // Proceed with the iterations as long as the method did not converge or reach the user-specified maximum number // of iterations. while (!converged && iterations < maximalNumberOfIterations) { // Compute x' = A*x + b. gmm::mult(*gmmxxMatrix, *currentX, *multiplyResult); gmm::add(b, *multiplyResult); // Reduce the vector x by applying min/max over all nondeterministic choices. if (minimize) { storm::utility::vector::reduceVectorMin(*multiplyResult, *newX, A.getRowGroupIndices()); } else { storm::utility::vector::reduceVectorMax(*multiplyResult, *newX, A.getRowGroupIndices()); } // Determine whether the method converged. converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, this->precision, this->relative); // Update environment variables. std::swap(currentX, newX); ++iterations; } // Check if the solver converged and issue a warning otherwise. if (converged) { LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterations << " iterations."); } else { LOG4CPLUS_WARN(logger, "Iterative solver did not converge after " << iterations << " iterations."); } // If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result // is currently stored in currentX, but x is the output vector. if (currentX == copyX) { std::swap(x, *currentX); } if (!xMemoryProvided) { delete copyX; } if (!multiplyResultMemoryProvided) { delete multiplyResult; } } template<typename ValueType> void GmmxxNondeterministicLinearEquationSolver<ValueType>::performMatrixVectorMultiplication(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType>* b, uint_fast64_t n, std::vector<ValueType>* multiplyResult) const { // Transform the transition probability matrix to the gmm++ format to use its arithmetic. std::unique_ptr<gmm::csr_matrix<ValueType>> gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<ValueType>(A); bool multiplyResultMemoryProvided = true; if (multiplyResult == nullptr) { multiplyResult = new std::vector<ValueType>(A.getRowCount()); multiplyResultMemoryProvided = false; } // Now perform matrix-vector multiplication as long as we meet the bound of the formula. for (uint_fast64_t i = 0; i < n; ++i) { gmm::mult(*gmmxxMatrix, x, *multiplyResult); if (b != nullptr) { gmm::add(*b, *multiplyResult); } if (minimize) { storm::utility::vector::reduceVectorMin(*multiplyResult, x, A.getRowGroupIndices()); } else { storm::utility::vector::reduceVectorMax(*multiplyResult, x, A.getRowGroupIndices()); } } if (!multiplyResultMemoryProvided) { delete multiplyResult; } } // Explicitly instantiate the solver. template class GmmxxNondeterministicLinearEquationSolver<double>; } // namespace solver } // namespace storm