#include "SparseMdpParameterLiftingModelChecker.h" #include "storm/adapters/CarlAdapter.h" #include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h" #include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h" #include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "storm/models/sparse/Mdp.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/utility/vector.h" #include "storm/utility/graph.h" #include "storm/solver/GameSolver.h" #include "storm/logic/FragmentSpecification.h" #include "storm/exceptions/InvalidArgumentException.h" #include "storm/exceptions/InvalidPropertyException.h" #include "storm/exceptions/NotSupportedException.h" namespace storm { namespace modelchecker { namespace parametric { template SparseMdpParameterLiftingModelChecker::SparseMdpParameterLiftingModelChecker(SparseModelType const& parametricModel) : SparseParameterLiftingModelChecker(parametricModel), solverFactory(std::make_unique>()) { } template SparseMdpParameterLiftingModelChecker::SparseMdpParameterLiftingModelChecker(SparseModelType const& parametricModel, std::unique_ptr>&& solverFactory) : SparseParameterLiftingModelChecker(parametricModel), solverFactory(std::move(solverFactory)) { } template bool SparseMdpParameterLiftingModelChecker::canHandle(CheckTask const& checkTask) const { return checkTask.getFormula().isInFragment(storm::logic::reachability().setRewardOperatorsAllowed(true).setReachabilityRewardFormulasAllowed(true).setBoundedUntilFormulasAllowed(true).setCumulativeRewardFormulasAllowed(true)); } template void SparseMdpParameterLiftingModelChecker::specifyBoundedUntilFormula(CheckTask const& checkTask) { // get the step bound STORM_LOG_THROW(!checkTask.getFormula().hasLowerBound(), storm::exceptions::NotSupportedException, "Lower step bounds are not supported."); STORM_LOG_THROW(checkTask.getFormula().hasUpperBound(), storm::exceptions::NotSupportedException, "Expected a bounded until formula with an upper bound."); STORM_LOG_THROW(checkTask.getFormula().isStepBounded(), storm::exceptions::NotSupportedException, "Expected a bounded until formula with step bounds."); stepBound = checkTask.getFormula().getUpperBound().evaluateAsInt(); STORM_LOG_THROW(*stepBound > 0, storm::exceptions::NotSupportedException, "Can not apply parameter lifting on step bounded formula: The step bound has to be positive."); if (checkTask.getFormula().isUpperBoundStrict()) { STORM_LOG_THROW(*stepBound > 0, storm::exceptions::NotSupportedException, "Expected a strict upper step bound that is greater than zero."); --(*stepBound); } STORM_LOG_THROW(*stepBound > 0, storm::exceptions::NotSupportedException, "Can not apply parameter lifting on step bounded formula: The step bound has to be positive."); // get the results for the subformulas storm::modelchecker::SparsePropositionalModelChecker propositionalChecker(this->parametricModel); STORM_LOG_THROW(propositionalChecker.canHandle(checkTask.getFormula().getLeftSubformula()) && propositionalChecker.canHandle(checkTask.getFormula().getRightSubformula()), storm::exceptions::NotSupportedException, "Parameter lifting with non-propositional subformulas is not supported"); storm::storage::BitVector phiStates = std::move(propositionalChecker.check(checkTask.getFormula().getLeftSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector()); storm::storage::BitVector psiStates = std::move(propositionalChecker.check(checkTask.getFormula().getRightSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector()); // get the maybeStates maybeStates = storm::solver::minimize(checkTask.getOptimizationDirection()) ? storm::utility::graph::performProbGreater0A(this->parametricModel.getTransitionMatrix(), this->parametricModel.getTransitionMatrix().getRowGroupIndices(), this->parametricModel.getBackwardTransitions(), phiStates, psiStates, true, *stepBound) : storm::utility::graph::performProbGreater0E(this->parametricModel.getBackwardTransitions(), phiStates, psiStates, true, *stepBound); maybeStates &= ~psiStates; // set the result for all non-maybe states resultsForNonMaybeStates = std::vector(this->parametricModel.getNumberOfStates(), storm::utility::zero()); storm::utility::vector::setVectorValues(resultsForNonMaybeStates, psiStates, storm::utility::one()); // if there are maybestates, create the parameterLifter if (!maybeStates.empty()) { // Create the vector of one-step probabilities to go to target states. std::vector b = this->parametricModel.getTransitionMatrix().getConstrainedRowSumVector(storm::storage::BitVector(this->parametricModel.getTransitionMatrix().getRowCount(), true), psiStates); parameterLifter = std::make_unique>(this->parametricModel.getTransitionMatrix(), b, this->parametricModel.getTransitionMatrix().getRowIndicesOfRowGroups(maybeStates), maybeStates); computePlayer1Matrix(); applyPreviousResultAsHint = false; } // We know some bounds for the results lowerResultBound = storm::utility::zero(); upperResultBound = storm::utility::one(); } template void SparseMdpParameterLiftingModelChecker::specifyUntilFormula(CheckTask const& checkTask) { // get the results for the subformulas storm::modelchecker::SparsePropositionalModelChecker propositionalChecker(this->parametricModel); STORM_LOG_THROW(propositionalChecker.canHandle(checkTask.getFormula().getLeftSubformula()) && propositionalChecker.canHandle(checkTask.getFormula().getRightSubformula()), storm::exceptions::NotSupportedException, "Parameter lifting with non-propositional subformulas is not supported"); storm::storage::BitVector phiStates = std::move(propositionalChecker.check(checkTask.getFormula().getLeftSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector()); storm::storage::BitVector psiStates = std::move(propositionalChecker.check(checkTask.getFormula().getRightSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector()); // get the maybeStates std::pair statesWithProbability01 = storm::solver::minimize(checkTask.getOptimizationDirection()) ? storm::utility::graph::performProb01Min(this->parametricModel.getTransitionMatrix(), this->parametricModel.getTransitionMatrix().getRowGroupIndices(), this->parametricModel.getBackwardTransitions(), phiStates, psiStates) : storm::utility::graph::performProb01Max(this->parametricModel.getTransitionMatrix(), this->parametricModel.getTransitionMatrix().getRowGroupIndices(), this->parametricModel.getBackwardTransitions(), phiStates, psiStates); maybeStates = ~(statesWithProbability01.first | statesWithProbability01.second); // set the result for all non-maybe states resultsForNonMaybeStates = std::vector(this->parametricModel.getNumberOfStates(), storm::utility::zero()); storm::utility::vector::setVectorValues(resultsForNonMaybeStates, statesWithProbability01.second, storm::utility::one()); // if there are maybestates, create the parameterLifter if (!maybeStates.empty()) { // Create the vector of one-step probabilities to go to target states. std::vector b = this->parametricModel.getTransitionMatrix().getConstrainedRowSumVector(storm::storage::BitVector(this->parametricModel.getTransitionMatrix().getRowCount(), true), statesWithProbability01.second); parameterLifter = std::make_unique>(this->parametricModel.getTransitionMatrix(), b, this->parametricModel.getTransitionMatrix().getRowIndicesOfRowGroups(maybeStates), maybeStates); computePlayer1Matrix(); // Check whether there is an EC consisting of maybestates applyPreviousResultAsHint = storm::solver::minimize(checkTask.getOptimizationDirection()) || // when minimizing, there can not be an EC within the maybestates storm::utility::graph::performProb1A(this->parametricModel.getTransitionMatrix(), this->parametricModel.getTransitionMatrix().getRowGroupIndices(), this->parametricModel.getBackwardTransitions(), maybeStates, ~maybeStates).full(); } // We know some bounds for the results lowerResultBound = storm::utility::zero(); upperResultBound = storm::utility::one(); } template void SparseMdpParameterLiftingModelChecker::specifyReachabilityRewardFormula(CheckTask const& checkTask) { // get the results for the subformula storm::modelchecker::SparsePropositionalModelChecker propositionalChecker(this->parametricModel); STORM_LOG_THROW(propositionalChecker.canHandle(checkTask.getFormula().getSubformula()), storm::exceptions::NotSupportedException, "Parameter lifting with non-propositional subformulas is not supported"); storm::storage::BitVector targetStates = std::move(propositionalChecker.check(checkTask.getFormula().getSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector()); // get the maybeStates storm::storage::BitVector infinityStates = storm::solver::minimize(checkTask.getOptimizationDirection()) ? storm::utility::graph::performProb1E(this->parametricModel.getTransitionMatrix(), this->parametricModel.getTransitionMatrix().getRowGroupIndices(), this->parametricModel.getBackwardTransitions(), storm::storage::BitVector(this->parametricModel.getNumberOfStates(), true), targetStates) : storm::utility::graph::performProb1A(this->parametricModel.getTransitionMatrix(), this->parametricModel.getTransitionMatrix().getRowGroupIndices(), this->parametricModel.getBackwardTransitions(), storm::storage::BitVector(this->parametricModel.getNumberOfStates(), true), targetStates); infinityStates.complement(); maybeStates = ~(targetStates | infinityStates); // set the result for all the non-maybe states resultsForNonMaybeStates = std::vector(this->parametricModel.getNumberOfStates(), storm::utility::zero()); storm::utility::vector::setVectorValues(resultsForNonMaybeStates, infinityStates, storm::utility::infinity()); // if there are maybestates, create the parameterLifter if (!maybeStates.empty()) { // Create the reward vector STORM_LOG_THROW((checkTask.isRewardModelSet() && this->parametricModel.hasRewardModel(checkTask.getRewardModel())) || (!checkTask.isRewardModelSet() && this->parametricModel.hasUniqueRewardModel()), storm::exceptions::InvalidPropertyException, "The reward model specified by the CheckTask is not available in the given model."); typename SparseModelType::RewardModelType const& rewardModel = checkTask.isRewardModelSet() ? this->parametricModel.getRewardModel(checkTask.getRewardModel()) : this->parametricModel.getUniqueRewardModel(); std::vector b = rewardModel.getTotalRewardVector(this->parametricModel.getTransitionMatrix()); // We need to handle choices that lead to an infinity state. // As a maybeState does not have reward infinity, such a choice will never be picked. Hence, we can unselect the corresponding rows storm::storage::BitVector selectedRows = this->parametricModel.getTransitionMatrix().getRowIndicesOfRowGroups(maybeStates); for (uint_fast64_t row : selectedRows) { for (auto const& element : this->parametricModel.getTransitionMatrix().getRow(row)) { if (infinityStates.get(element.getColumn())) { selectedRows.set(row, false); break; } } } parameterLifter = std::make_unique>(this->parametricModel.getTransitionMatrix(), b, selectedRows, maybeStates); computePlayer1Matrix(); // Check whether there is an EC consisting of maybestates applyPreviousResultAsHint = !storm::solver::minimize(checkTask.getOptimizationDirection()) || // when maximizing, there can not be an EC within the maybestates storm::utility::graph::performProb1A(this->parametricModel.getTransitionMatrix(), this->parametricModel.getTransitionMatrix().getRowGroupIndices(), this->parametricModel.getBackwardTransitions(), maybeStates, ~maybeStates).full(); } // We only know a lower bound for the result lowerResultBound = storm::utility::zero(); } template void SparseMdpParameterLiftingModelChecker::specifyCumulativeRewardFormula(CheckTask const& checkTask) { // Obtain the stepBound stepBound = checkTask.getFormula().getBound().evaluateAsInt(); if (checkTask.getFormula().isBoundStrict()) { STORM_LOG_THROW(*stepBound > 0, storm::exceptions::NotSupportedException, "Expected a strict upper step bound that is greater than zero."); --(*stepBound); } STORM_LOG_THROW(*stepBound > 0, storm::exceptions::NotSupportedException, "Can not apply parameter lifting on step bounded formula: The step bound has to be positive."); //Every state is a maybeState maybeStates = storm::storage::BitVector(this->parametricModel.getTransitionMatrix().getColumnCount(), true); resultsForNonMaybeStates = std::vector(this->parametricModel.getNumberOfStates()); // Create the reward vector STORM_LOG_THROW((checkTask.isRewardModelSet() && this->parametricModel.hasRewardModel(checkTask.getRewardModel())) || (!checkTask.isRewardModelSet() && this->parametricModel.hasUniqueRewardModel()), storm::exceptions::InvalidPropertyException, "The reward model specified by the CheckTask is not available in the given model."); typename SparseModelType::RewardModelType const& rewardModel = checkTask.isRewardModelSet() ? this->parametricModel.getRewardModel(checkTask.getRewardModel()) : this->parametricModel.getUniqueRewardModel(); std::vector b = rewardModel.getTotalRewardVector(this->parametricModel.getTransitionMatrix()); parameterLifter = std::make_unique>(this->parametricModel.getTransitionMatrix(), b, maybeStates, maybeStates); applyPreviousResultAsHint = false; // We only know a lower bound for the result lowerResultBound = storm::utility::zero(); } template std::unique_ptr SparseMdpParameterLiftingModelChecker::computeQuantitativeValues(storm::storage::ParameterRegion const& region, storm::solver::OptimizationDirection const& dirForParameters) { if(maybeStates.empty()) { return std::make_unique>(resultsForNonMaybeStates); } parameterLifter->specifyRegion(region, dirForParameters); // Set up the solver auto solver = solverFactory->create(player1Matrix, parameterLifter->getMatrix()); if(lowerResultBound) solver->setLowerBound(lowerResultBound.get()); if(upperResultBound) solver->setUpperBound(upperResultBound.get()); if(applyPreviousResultAsHint) { solver->setTrackScheduler(true); x.resize(maybeStates.getNumberOfSetBits(), storm::utility::zero()); if(storm::solver::minimize(dirForParameters) && minSched && player1Sched) solver->setSchedulerHint(std::move(player1Sched.get()), std::move(minSched.get())); if(storm::solver::maximize(dirForParameters) && maxSched && player1Sched) solver->setSchedulerHint(std::move(player1Sched.get()), std::move(maxSched.get())); } else { x.assign(maybeStates.getNumberOfSetBits(), storm::utility::zero()); } if (this->currentCheckTask->isBoundSet() && this->currentCheckTask->getOptimizationDirection() == dirForParameters && solver->hasSchedulerHints()) { // If we reach this point, we know that after applying the hints, the x-values can only become larger (if we maximize) or smaller (if we minimize). std::unique_ptr> termCond; storm::storage::BitVector relevantStatesInSubsystem = this->currentCheckTask->isOnlyInitialStatesRelevantSet() ? this->parametricModel.getInitialStates() % maybeStates : storm::storage::BitVector(maybeStates.getNumberOfSetBits(), true); if (storm::solver::minimize(dirForParameters)) { // Terminate if the value for ALL relevant states is already below the threshold termCond = std::make_unique> (relevantStatesInSubsystem, this->currentCheckTask->getBoundThreshold(), true, false); } else { // Terminate if the value for ALL relevant states is already above the threshold termCond = std::make_unique> (relevantStatesInSubsystem, this->currentCheckTask->getBoundThreshold(), true, true); } solver->setTerminationCondition(std::move(termCond)); } // Invoke the solver if(stepBound) { assert(*stepBound > 0); solver->repeatedMultiply(this->currentCheckTask->getOptimizationDirection(), dirForParameters, x, ¶meterLifter->getVector(), *stepBound); } else { solver->solveGame(this->currentCheckTask->getOptimizationDirection(), dirForParameters, x, parameterLifter->getVector()); if(applyPreviousResultAsHint) { if(storm::solver::minimize(dirForParameters)) { minSched = solver->getPlayer2Scheduler(); } else { maxSched = solver->getPlayer2Scheduler(); } player1Sched = solver->getPlayer1Scheduler(); } } // Get the result for the complete model (including maybestates) std::vector result = resultsForNonMaybeStates; auto maybeStateResIt = x.begin(); for(auto const& maybeState : maybeStates) { result[maybeState] = *maybeStateResIt; ++maybeStateResIt; } return std::make_unique>(std::move(result)); } template void SparseMdpParameterLiftingModelChecker::computePlayer1Matrix() { uint_fast64_t n = 0; for(auto const& maybeState : maybeStates) { n += this->parametricModel.getTransitionMatrix().getRowGroupSize(maybeState); } // The player 1 matrix is the identity matrix of size n with the row groups as given by the original matrix storm::storage::SparseMatrixBuilder matrixBuilder(n, n, n, true, true, maybeStates.getNumberOfSetBits()); uint_fast64_t p1MatrixRow = 0; for (auto maybeState : maybeStates){ matrixBuilder.newRowGroup(p1MatrixRow); for (uint_fast64_t row = this->parametricModel.getTransitionMatrix().getRowGroupIndices()[maybeState]; row < this->parametricModel.getTransitionMatrix().getRowGroupIndices()[maybeState + 1]; ++row){ matrixBuilder.addNextValue(p1MatrixRow, p1MatrixRow, storm::utility::one()); ++p1MatrixRow; } } player1Matrix = matrixBuilder.build(); } template void SparseMdpParameterLiftingModelChecker::reset() { maybeStates.resize(0); resultsForNonMaybeStates.clear(); stepBound = boost::none; player1Matrix = storm::storage::SparseMatrix(); parameterLifter = nullptr; minSched = boost::none; maxSched = boost::none; x.clear(); lowerResultBound = boost::none; upperResultBound = boost::none; applyPreviousResultAsHint = false; } template class SparseMdpParameterLiftingModelChecker, double>; } } }