// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // Copyright (C) 2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define TEST_ENABLE_TEMPORARY_TRACKING #include "main.h" template void matrixRedux(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols); // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test // failures if we underflow into denormals. Thus, we scale so that entries are close to 1. MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); for(int j = 0; j < cols; j++) for(int i = 0; i < rows; i++) { s += m1(i,j); p *= m1_for_prod(i,j); minc = (std::min)(numext::real(minc), numext::real(m1(i,j))); maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j))); } const Scalar mean = s/Scalar(RealScalar(rows*cols)); VERIFY_IS_APPROX(m1.sum(), s); VERIFY_IS_APPROX(m1.mean(), mean); VERIFY_IS_APPROX(m1_for_prod.prod(), p); VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); // test slice vectorization assuming assign is ok Index r0 = internal::random(0,rows-1); Index c0 = internal::random(0,cols-1); Index r1 = internal::random(r0+1,rows)-r0; Index c1 = internal::random(c0+1,cols)-c0; VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod()); VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); // regression for bug 1090 const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6; const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6; if(R1<=rows-r0 && C1<=cols-c0) { VERIFY_IS_APPROX( (m1.template block(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() ); } // test empty objects VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0)); VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1)); // test nesting complex expression VERIFY_EVALUATION_COUNT( (m1.matrix()*m1.matrix().transpose()).sum(), (MatrixType::SizeAtCompileTime==Dynamic ? 1 : 0) ); Matrix m2(rows,rows); m2.setRandom(); VERIFY_EVALUATION_COUNT( ((m1.matrix()*m1.matrix().transpose())+m2).sum(), (MatrixType::SizeAtCompileTime==Dynamic ? 1 : 0) ); } template void vectorRedux(const VectorType& w) { using std::abs; typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index size = w.size(); VectorType v = VectorType::Random(size); VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod for(int i = 1; i < size; i++) { Scalar s(0), p(1); RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); for(int j = 0; j < i; j++) { s += v[j]; p *= v_for_prod[j]; minc = (std::min)(minc, numext::real(v[j])); maxc = (std::max)(maxc, numext::real(v[j])); } VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); } for(int i = 0; i < size-1; i++) { Scalar s(0), p(1); RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); for(int j = i; j < size; j++) { s += v[j]; p *= v_for_prod[j]; minc = (std::min)(minc, numext::real(v[j])); maxc = (std::max)(maxc, numext::real(v[j])); } VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1)); VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod()); VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); } for(int i = 0; i < size/2; i++) { Scalar s(0), p(1); RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); for(int j = i; j < size-i; j++) { s += v[j]; p *= v_for_prod[j]; minc = (std::min)(minc, numext::real(v[j])); maxc = (std::max)(maxc, numext::real(v[j])); } VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1)); VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod()); VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); } // test empty objects VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); VERIFY_RAISES_ASSERT(v.head(0).mean()); VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); } void test_redux() { // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. int maxsize = (std::min)(100,STORMEIGEN_TEST_MAX_SIZE); TEST_SET_BUT_UNUSED_VARIABLE(maxsize); for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( matrixRedux(Matrix()) ); CALL_SUBTEST_1( matrixRedux(Array()) ); CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); CALL_SUBTEST_2( matrixRedux(Array2f()) ); CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); CALL_SUBTEST_3( matrixRedux(Array4d()) ); CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random(1,maxsize), internal::random(1,maxsize))) ); CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random(1,maxsize), internal::random(1,maxsize))) ); CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random(1,maxsize), internal::random(1,maxsize))) ); CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random(1,maxsize), internal::random(1,maxsize))) ); CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random(1,maxsize), internal::random(1,maxsize))) ); CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random(1,maxsize), internal::random(1,maxsize))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_7( vectorRedux(Vector4f()) ); CALL_SUBTEST_7( vectorRedux(Array4f()) ); CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random(1,maxsize))) ); CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random(1,maxsize))) ); CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random(1,maxsize))) ); CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random(1,maxsize))) ); } }