// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template void map_class_vector(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar; Index size = m.size(); VectorType v = VectorType::Random(size); Index arraysize = 3*size; Scalar* a_array = internal::aligned_new(arraysize+1); Scalar* array = a_array; if(Alignment!=Aligned) array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits::Real))); { Map > map(array, size); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[3*i] == v[i]); VERIFY(map[i] == v[i]); } } { Map > map(array, size, InnerStride(2)); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[2*i] == v[i]); VERIFY(map[i] == v[i]); } } internal::aligned_delete(a_array, arraysize+1); } template void map_class_matrix(const MatrixType& _m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; Index rows = _m.rows(), cols = _m.cols(); MatrixType m = MatrixType::Random(rows,cols); Scalar s1 = internal::random(); Index arraysize = 2*(rows+4)*(cols+4); Scalar* a_array1 = internal::aligned_new(arraysize+1); Scalar* array1 = a_array1; if(Alignment!=Aligned) array1 = (Scalar*)(std::ptrdiff_t(a_array1) + (internal::packet_traits::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits::Real))); Scalar a_array2[256]; Scalar* array2 = a_array2; if(Alignment!=Aligned) array2 = (Scalar*)(std::ptrdiff_t(a_array2) + (internal::packet_traits::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits::Real))); else array2 = (Scalar*)(((std::size_t(a_array2)+STORMEIGEN_MAX_ALIGN_BYTES-1)/STORMEIGEN_MAX_ALIGN_BYTES)*STORMEIGEN_MAX_ALIGN_BYTES); Index maxsize2 = a_array2 - array2 + 256; // test no inner stride and some dynamic outer stride for(int k=0; k<2; ++k) { if(k==1 && (m.innerSize()+1)*m.outerSize() > maxsize2) break; Scalar* array = (k==0 ? array1 : array2); Map > map(array, rows, cols, OuterStride(m.innerSize()+1)); map = m; VERIFY(map.outerStride() == map.innerSize()+1); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } VERIFY_IS_APPROX(s1*map,s1*m); map *= s1; VERIFY_IS_APPROX(map,s1*m); } // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, // this allows to hit the special case where it's vectorizable. for(int k=0; k<2; ++k) { if(k==1 && (m.innerSize()+4)*m.outerSize() > maxsize2) break; Scalar* array = (k==0 ? array1 : array2); enum { InnerSize = MatrixType::InnerSizeAtCompileTime, OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 }; Map > map(array, rows, cols, OuterStride(m.innerSize()+4)); map = m; VERIFY(map.outerStride() == map.innerSize()+4); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } VERIFY_IS_APPROX(s1*map,s1*m); map *= s1; VERIFY_IS_APPROX(map,s1*m); } // test both inner stride and outer stride for(int k=0; k<2; ++k) { if(k==1 && (2*m.innerSize()+1)*(m.outerSize()*2) > maxsize2) break; Scalar* array = (k==0 ? array1 : array2); Map > map(array, rows, cols, Stride(2*m.innerSize()+1, 2)); map = m; VERIFY(map.outerStride() == 2*map.innerSize()+1); VERIFY(map.innerStride() == 2); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } VERIFY_IS_APPROX(s1*map,s1*m); map *= s1; VERIFY_IS_APPROX(map,s1*m); } internal::aligned_delete(a_array1, arraysize+1); } void test_mapstride() { for(int i = 0; i < g_repeat; i++) { int maxn = 30; CALL_SUBTEST_1( map_class_vector(Matrix()) ); CALL_SUBTEST_1( map_class_vector(Matrix()) ); CALL_SUBTEST_2( map_class_vector(Vector4d()) ); CALL_SUBTEST_2( map_class_vector(Vector4d()) ); CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); CALL_SUBTEST_4( map_class_vector(VectorXcf(internal::random(1,maxn))) ); CALL_SUBTEST_4( map_class_vector(VectorXcf(internal::random(1,maxn))) ); CALL_SUBTEST_5( map_class_vector(VectorXi(internal::random(1,maxn))) ); CALL_SUBTEST_5( map_class_vector(VectorXi(internal::random(1,maxn))) ); CALL_SUBTEST_1( map_class_matrix(Matrix()) ); CALL_SUBTEST_1( map_class_matrix(Matrix()) ); CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); CALL_SUBTEST_3( map_class_matrix(Matrix()) ); CALL_SUBTEST_3( map_class_matrix(Matrix()) ); CALL_SUBTEST_3( map_class_matrix(Matrix()) ); CALL_SUBTEST_3( map_class_matrix(Matrix()) ); CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random(1,maxn),internal::random(1,maxn))) ); CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random(1,maxn),internal::random(1,maxn))) ); CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random(1,maxn),internal::random(1,maxn))) ); CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random(1,maxn),internal::random(1,maxn))) ); CALL_SUBTEST_6( map_class_matrix(MatrixXcd(internal::random(1,maxn),internal::random(1,maxn))) ); CALL_SUBTEST_6( map_class_matrix(MatrixXcd(internal::random(1,maxn),internal::random(1,maxn))) ); TEST_SET_BUT_UNUSED_VARIABLE(maxn); } }