#include #include #include #include "macros.h" #include "shortestPaths.h" #include "graph.h" // FIXME: I've accidentally used k=0 *twice* now without realizing that k>=1 is required! // Accessing zero should trigger a warning! // (Also, did I document this? I think so, somewhere. I went with k>=1 because // that's what the KSP paper used, but in retrospect k>=0 seems more intuitive ...) namespace storm { namespace utility { namespace ksp { template ShortestPathsGenerator::ShortestPathsGenerator(storage::SparseMatrix const& transitionMatrix, std::unordered_map const& targetProbMap, BitVector const& initialStates, MatrixFormat matrixFormat) : transitionMatrix(transitionMatrix), numStates(transitionMatrix.getColumnCount() + 1), // one more for meta-target metaTarget(transitionMatrix.getColumnCount()), // first unused state index initialStates(initialStates), targetProbMap(targetProbMap), matrixFormat(matrixFormat) { computePredecessors(); // gives us SP-predecessors, SP-distances performDijkstra(); computeSPSuccessors(); // constructs the recursive shortest path representations initializeShortestPaths(); candidatePaths.resize(numStates); } template ShortestPathsGenerator::ShortestPathsGenerator(storage::SparseMatrix const& transitionMatrix, std::vector const& targetProbVector, BitVector const& initialStates, MatrixFormat matrixFormat) : ShortestPathsGenerator(transitionMatrix, vectorToMap(targetProbVector), initialStates, matrixFormat) {} // extracts the relevant info from the model and delegates to ctor above template ShortestPathsGenerator::ShortestPathsGenerator(Model const& model, BitVector const& targetBV) : ShortestPathsGenerator(model.getTransitionMatrix(), allProbOneMap(targetBV), model.getInitialStates(), MatrixFormat::straight) {} // several alternative ways to specify the targets are provided, // each converts the targets and delegates to the ctor above // I admit it's kind of ugly, but actually pretty convenient (and I've wanted to try C++11 delegation) template ShortestPathsGenerator::ShortestPathsGenerator(Model const& model, state_t singleTarget) : ShortestPathsGenerator(model, std::vector{singleTarget}) {} template ShortestPathsGenerator::ShortestPathsGenerator(Model const& model, std::vector const& targetList) : ShortestPathsGenerator(model, BitVector(model.getNumberOfStates(), targetList)) {} template ShortestPathsGenerator::ShortestPathsGenerator(Model const& model, std::string const& targetLabel) : ShortestPathsGenerator(model, model.getStates(targetLabel)) {} template T ShortestPathsGenerator::getDistance(unsigned long k) { computeKSP(k); return kShortestPaths[metaTarget][k - 1].distance; } template BitVector ShortestPathsGenerator::getStates(unsigned long k) { computeKSP(k); BitVector stateSet(numStates - 1, false); // no meta-target Path currentPath = kShortestPaths[metaTarget][k - 1]; boost::optional maybePredecessor = currentPath.predecessorNode; // this omits the first node, which is actually convenient since that's the meta-target while (maybePredecessor) { state_t predecessor = maybePredecessor.get(); stateSet.set(predecessor, true); currentPath = kShortestPaths[predecessor][currentPath.predecessorK - 1]; // god damn you, index maybePredecessor = currentPath.predecessorNode; } return stateSet; } template std::vector ShortestPathsGenerator::getPathAsList(unsigned long k) { computeKSP(k); std::vector backToFrontList; Path currentPath = kShortestPaths[metaTarget][k - 1]; boost::optional maybePredecessor = currentPath.predecessorNode; // this omits the first node, which is actually convenient since that's the meta-target while (maybePredecessor) { state_t predecessor = maybePredecessor.get(); backToFrontList.push_back(predecessor); currentPath = kShortestPaths[predecessor][currentPath.predecessorK - 1]; maybePredecessor = currentPath.predecessorNode; } return backToFrontList; } template void ShortestPathsGenerator::computePredecessors() { assert(numStates - 1 == transitionMatrix.getRowCount()); // one more for meta-target graphPredecessors.resize(numStates); for (state_t i = 0; i < numStates - 1; i++) { for (auto const& transition : transitionMatrix.getRowGroup(i)) { // to avoid non-minimal paths, the meta-target-predecessors are // *not* predecessors of any state but the meta-target if (!isMetaTargetPredecessor(i)) { graphPredecessors[transition.getColumn()].push_back(i); } } } // meta-target has exactly the meta-target-predecessors as predecessors // (duh. note that the meta-target-predecessors used to be called target, // but that's not necessarily true in the matrix/value invocation case) for (auto targetProbPair : targetProbMap) { graphPredecessors[metaTarget].push_back(targetProbPair.first); } } template void ShortestPathsGenerator::performDijkstra() { // the existing Dijkstra isn't working anyway AND // doesn't fully meet our requirements, so let's roll our own T inftyDistance = zero(); T zeroDistance = one(); shortestPathDistances.resize(numStates, inftyDistance); shortestPathPredecessors.resize(numStates, boost::optional()); // set serves as priority queue with unique membership // default comparison on pair actually works fine if distance is the first entry std::set, std::greater>> dijkstraQueue; for (state_t initialState : initialStates) { shortestPathDistances[initialState] = zeroDistance; dijkstraQueue.emplace(zeroDistance, initialState); } while (!dijkstraQueue.empty()) { state_t currentNode = (*dijkstraQueue.begin()).second; dijkstraQueue.erase(dijkstraQueue.begin()); if (!isMetaTargetPredecessor(currentNode)) { // non-target node, treated normally for (auto const& transition : transitionMatrix.getRowGroup(currentNode)) { state_t otherNode = transition.getColumn(); // note that distances are probabilities, thus they are multiplied and larger is better T alternateDistance = shortestPathDistances[currentNode] * convertDistance(currentNode, otherNode, transition.getValue()); assert(zero() <= alternateDistance <= one()); // FIXME: there is a negative transition! SM gives us a placeholder! if (alternateDistance > shortestPathDistances[otherNode]) { shortestPathDistances[otherNode] = alternateDistance; shortestPathPredecessors[otherNode] = boost::optional(currentNode); dijkstraQueue.emplace(alternateDistance, otherNode); } } } else { // node only has one "virtual edge" (with prob as per targetProbMap) to meta-target // FIXME: double check T alternateDistance = shortestPathDistances[currentNode] * targetProbMap[currentNode]; if (alternateDistance > shortestPathDistances[metaTarget]) { shortestPathDistances[metaTarget] = alternateDistance; shortestPathPredecessors[metaTarget] = boost::optional(currentNode); } // no need to enqueue meta-target } } } template void ShortestPathsGenerator::computeSPSuccessors() { shortestPathSuccessors.resize(numStates); for (state_t i = 0; i < numStates; i++) { if (shortestPathPredecessors[i]) { state_t predecessor = shortestPathPredecessors[i].get(); shortestPathSuccessors[predecessor].push_back(i); } } } template void ShortestPathsGenerator::initializeShortestPaths() { kShortestPaths.resize(numStates); // BFS in Dijkstra-SP order std::queue bfsQueue; for (state_t initialState : initialStates) { bfsQueue.push(initialState); } while (!bfsQueue.empty()) { state_t currentNode = bfsQueue.front(); bfsQueue.pop(); if (!kShortestPaths[currentNode].empty()) { continue; // already visited } for (state_t successorNode : shortestPathSuccessors[currentNode]) { bfsQueue.push(successorNode); } // note that `shortestPathPredecessor` may not be present // if current node is an initial state // in this case, the boost::optional copy of an uninitialized optional is hopefully also uninitialized kShortestPaths[currentNode].push_back(Path { shortestPathPredecessors[currentNode], 1, shortestPathDistances[currentNode] }); } } template T ShortestPathsGenerator::getEdgeDistance(state_t tailNode, state_t headNode) const { // just to be clear, head is where the arrow points (obviously) if (headNode != metaTarget) { // edge is "normal", not to meta-target for (auto const& transition : transitionMatrix.getRowGroup(tailNode)) { if (transition.getColumn() == headNode) { return convertDistance(tailNode, headNode, transition.getValue()); } } // there is no such edge // let's disallow that for now, because I'm not expecting it to happen assert(false); return zero(); } else { // edge must be "virtual edge" to meta-target assert(isMetaTargetPredecessor(tailNode)); return targetProbMap.at(tailNode); // FIXME double check } } template void ShortestPathsGenerator::computeNextPath(state_t node, unsigned long k) { assert(k >= 2); // Dijkstra is used for k=1 assert(kShortestPaths[node].size() == k - 1); // if not, the previous SP must not exist // TODO: I could extract the candidate generation to make this function more succinct if (k == 2) { // Step B.1 in J&M paper Path shortestPathToNode = kShortestPaths[node][1 - 1]; // never forget index shift :-| for (state_t predecessor : graphPredecessors[node]) { // add shortest paths to predecessors plus edge to current node Path pathToPredecessorPlusEdge = { boost::optional(predecessor), 1, shortestPathDistances[predecessor] * getEdgeDistance(predecessor, node) }; candidatePaths[node].insert(pathToPredecessorPlusEdge); // ... but not the actual shortest path auto it = std::find(candidatePaths[node].begin(), candidatePaths[node].end(), shortestPathToNode); if (it != candidatePaths[node].end()) { candidatePaths[node].erase(it); } } } if (not (k == 2 && isInitialState(node))) { // Steps B.2-5 in J&M paper // the (k-1)th shortest path (i.e., one better than the one we want to compute) Path previousShortestPath = kShortestPaths[node][k - 1 - 1]; // oh god, I forgot index shift AGAIN // the predecessor node on that path state_t predecessor = previousShortestPath.predecessorNode.get(); // the path to that predecessor was the `tailK`-shortest unsigned long tailK = previousShortestPath.predecessorK; // i.e. source ~~tailK-shortest path~~> predecessor --> node // compute one-worse-shortest path to the predecessor (if it hasn't yet been computed) if (kShortestPaths[predecessor].size() < tailK + 1) { // TODO: investigate recursion depth and possible iterative alternative computeNextPath(predecessor, tailK + 1); } if (kShortestPaths[predecessor].size() >= tailK + 1) { // take that path, add an edge to the current node; that's a candidate Path pathToPredecessorPlusEdge = { boost::optional(predecessor), tailK + 1, kShortestPaths[predecessor][tailK + 1 - 1].distance * getEdgeDistance(predecessor, node) }; candidatePaths[node].insert(pathToPredecessorPlusEdge); } // else there was no path; TODO: does this need handling? -- yes, but not here (because the step B.1 may have added candidates) } // Step B.6 in J&M paper if (!candidatePaths[node].empty()) { Path minDistanceCandidate = *(candidatePaths[node].begin()); for (auto path : candidatePaths[node]) { if (path.distance > minDistanceCandidate.distance) { minDistanceCandidate = path; } } candidatePaths[node].erase(std::find(candidatePaths[node].begin(), candidatePaths[node].end(), minDistanceCandidate)); kShortestPaths[node].push_back(minDistanceCandidate); } else { // TODO: kSP does not exist. this is handled later, but it would be nice to catch it as early as possble, wouldn't it? STORM_LOG_TRACE("KSP: no candidates, this will trigger nonexisting ksp after exiting these recursions. TODO: handle here"); } } template void ShortestPathsGenerator::computeKSP(unsigned long k) { unsigned long alreadyComputedK = kShortestPaths[metaTarget].size(); for (unsigned long nextK = alreadyComputedK + 1; nextK <= k; nextK++) { computeNextPath(metaTarget, nextK); if (kShortestPaths[metaTarget].size() < nextK) { unsigned long lastExistingK = nextK - 1; STORM_LOG_DEBUG("KSP throws (as expected) due to nonexistence -- maybe this is unhandled and causes the Python interface to segfault?"); STORM_LOG_DEBUG("last existing k-SP has k=" + std::to_string(lastExistingK)); STORM_LOG_DEBUG("maybe this is unhandled and causes the Python interface to segfault?"); throw std::invalid_argument("k-SP does not exist for k=" + std::to_string(k)); } } } template void ShortestPathsGenerator::printKShortestPath(state_t targetNode, unsigned long k, bool head) const { // note the index shift! risk of off-by-one Path p = kShortestPaths[targetNode][k - 1]; if (head) { std::cout << "Path (reversed"; if (targetNode == metaTarget) { std::cout << ", w/ meta-target"; } std::cout <<"), dist (prob)=" << p.distance << ": ["; } std::cout << " " << targetNode; if (p.predecessorNode) { printKShortestPath(p.predecessorNode.get(), p.predecessorK, false); } else { std::cout << " ]" << std::endl; } } template class ShortestPathsGenerator; } } }