#ifndef PERMISSIVESCHEDULERS_H #define PERMISSIVESCHEDULERS_H #include #include "expressions/Variable.h" #include "StateActionPair.h" #include "StateActionTargetTuple.h" namespace storm { namespace storage { class PermissiveSchedulerPenalties { std::unordered_map mPenalties; public: double get(uint_fast64_t state, uint_fast64_t action) const { return get(StateActionPair(state, action)); } double get(StateActionPair const& sap) const { auto it = mPenalties.find(sap); if(it == mPenalties.end()) { return 1.0; } else { return it->second; } } void set(uint_fast64_t state, uint_fast64_t action, double penalty) { assert(penalty >= 1.0); if(penalty == 1.0) { auto it = mPenalties.find(std::make_pair(state, action)); if(it != mPenalties.end()) { mPenalties.erase(it); } } else { mPenalties.emplace(std::make_pair(state, action), penalty); } } void clear() { mPenalties.clear(); } }; class MilpPermissiveSchedulerComputation { private: bool mCalledOptimizer = false; storm::solver::LpSolver& solver; std::shared_ptr> mdp; std::unordered_map multistrategyVariables; std::unordered_map mProbVariables; std::unordered_map mAlphaVariables; std::unordered_map mBetaVariables; std::unordered_map mGammaVariables; BitVector const& mGoals; BitVector const& mSinks; public: MilpPermissiveSchedulerComputation(storm::solver::LpSolver& milpsolver, std::shared_ptr> mdp, BitVector const& goalstates, BitVector const& sinkstates) : solver(milpsolver), mdp(mdp), mGoals(goalstates), mSinks(sinkstates) { } void calculatePermissiveScheduler(double boundary, PermissiveSchedulerPenalties const& penalties, BitVector const& irrelevantStates = BitVector()) { createMILP(boundary, penalties, irrelevantStates); solver.optimize(); mCalledOptimizer = true; } bool foundSolution() { assert(mCalledOptimizer); return !solver.isInfeasible(); } BitVector getAllowedStateActionPairs() const { BitVector result(mdp->getNumberOfChoices(), true); for(auto const& entry : multistrategyVariables) { if(!solver.getBinaryValue(entry.second)) { result.set(mdp->getNondeterministicChoiceIndices()[entry.first.getState()]+entry.first.getAction(), false); } } return result; } private: /** * */ void createVariables(PermissiveSchedulerPenalties const& penalties, BitVector const& relevantStates) { // We need the unique initial state later, so we get that one before looping. assert(mdp->getInitialStates().getNumberOfSetBits() == 1); uint_fast64_t initialStateIndex = mdp->getInitialStates().getNextSetIndex(0); storm::expressions::Variable var; for(uint_fast64_t s : relevantStates) { // Create x_s variables // Notice that only the initial probability appears in the objective. if(s == initialStateIndex) { var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0, -1.0); } else { var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0); } mProbVariables[s] = var; // Create alpha_s variables var = solver.addBinaryVariable("alp_" + std::to_string(s)); mAlphaVariables[s] = var; // Create gamma_s variables var = solver.addBoundedContinuousVariable("gam_" + std::to_string(s), 0.0, 1.0); mGammaVariables[s] = var; for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { auto stateAndAction = StateActionPair(s,a); // Create y_(s,a) variables double penalty = penalties.get(stateAndAction); var = solver.addBinaryVariable("y_" + std::to_string(s) + "_" + std::to_string(a), -penalty); multistrategyVariables[stateAndAction] = var; // Create beta_(s,a,t) variables // Iterate over successors of s via a. for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0) { StateActionTarget sat = {s,a,entry.getColumn()}; var = solver.addBinaryVariable("beta_" + to_string(sat)); mBetaVariables[sat] = var; } } } } } void createConstraints(double boundary, storm::storage::BitVector const& relevantStates) { // (5) and (7) are omitted on purpose (-- we currenty do not support controllability of actions -- ) // (1) assert(mdp->getInitialStates().getNumberOfSetBits() == 1); uint_fast64_t initialStateIndex = mdp->getInitialStates().getNextSetIndex(0); solver.addConstraint("c1", mProbVariables[initialStateIndex] >= solver.getConstant(boundary)); for(uint_fast64_t s : relevantStates) { std::string stateString = std::to_string(s); storm::expressions::Expression expr; // (2) for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { expr = expr + multistrategyVariables[StateActionPair(s,a)]; } solver.addConstraint("c2-" + stateString, solver.getConstant(1) <= expr); // (5) solver.addConstraint("c5-" + std::to_string(s), mProbVariables[s] <= mAlphaVariables[s]); // (3) For the relevant states. for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { std::string sastring(stateString + "_" + std::to_string(a)); expr = storm::expressions::Expression(); for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0 && relevantStates.get(entry.getColumn())) { expr = expr + solver.getConstant(entry.getValue()) * mProbVariables[entry.getColumn()]; } else if (entry.getValue() != 0 && mGoals.get(entry.getColumn())) { expr = expr + solver.getConstant(entry.getValue()); } } solver.addConstraint("c3-" + sastring, mProbVariables[s] < (solver.getConstant(1) - multistrategyVariables[StateActionPair(s,a)]) + expr); } for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { // (6) std::string sastring(stateString + "_" + std::to_string(a)); expr = storm::expressions::Expression(); for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0) { StateActionTarget sat = {s,a,entry.getColumn()}; expr = expr + mBetaVariables[sat]; } } solver.addConstraint("c6-" + sastring, multistrategyVariables[StateActionPair(s,a)] == (solver.getConstant(1) - mAlphaVariables[s]) + expr); for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0) { StateActionTarget sat = {s,a,entry.getColumn()}; std::string satstring = to_string(sat); // (8) solver.addConstraint("c8-" + satstring, mGammaVariables[entry.getColumn()] < mGammaVariables[s] + (solver.getConstant(1) - mBetaVariables[sat])); // With rewards, we have to change this. } } } } } /** * */ void createMILP(double boundary, PermissiveSchedulerPenalties const& penalties, BitVector const& dontCareStates ) { BitVector irrelevant = mGoals | mSinks; BitVector relevantStates = ~irrelevant; // Notice that the separated construction of variables and // constraints slows down the construction of the MILP. // In the future, we might want to merge this. createVariables(penalties, relevantStates); createConstraints(boundary, relevantStates); solver.setModelSense(storm::solver::LpSolver::ModelSense::Minimize); } }; } } #endif /* PERMISSIVESCHEDULERS_H */