/*=========================================================================== Copyright (C) 2007-2017 Yves Renard, Julien Pommier. This file is a part of GetFEM++ GetFEM++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Library Exception for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. ===========================================================================*/ // SQUARED_MATRIX_PARAM; // DENSE_VECTOR_PARAM; // VECTOR_PARAM; // ENDPARAM; #include "gmm/gmm.h" using namespace std; // in order to test a using namespace std; using gmm::size_type; int print_debug = 0; size_type nb_fault_allowed = 200; size_type nb_fault = 0; double ratio_max = 0.0; struct la_stat { size_type nb_iter, nb_fault, nb_expe; la_stat(void) : nb_iter(0), nb_fault(0), nb_expe(0) {}; }; template la_stat ps_stat(const PS &, size_type nb_iter, bool fault) { static la_stat la; if (nb_iter != size_type(-1)) { la.nb_expe++; la.nb_iter += nb_iter; la.nb_fault += (fault) ? 1 : 0; } return la; } template void print_stat(const PS &ps, const char *name) { la_stat s = ps_stat(ps, size_type(-1), false); cout << name << "\t: " << s.nb_expe << " exp. with "; if (s.nb_fault > 1) cout << s.nb_fault << " faults"; else if (s.nb_fault == 1) cout << "1 fault"; else cout << "no fault"; if (s.nb_expe != 0) { double ratio = double(s.nb_fault) / double(s.nb_expe); ratio_max = std::max(ratio, ratio_max); cout << ", ratio = " << ratio; cout << ", average nb iter = " << double(s.nb_iter) / double(s.nb_expe); } cout << endl; } struct LEAST_SQUARE_CG { template void operator()(const MAT &m, VECT1 &v1, const VECT2 &v2, const PRECOND &, gmm::iteration &iter) const { gmm::least_squares_cg(m, v1, v2, iter); } }; struct BICGSTAB { template void operator()(const MAT &m, VECT1 &v1, const VECT2 &v2, const PRECOND &P, gmm::iteration &iter) const { gmm::bicgstab(m, v1, v2, P, iter); } }; struct GMRES { template void operator()(const MAT &m, VECT1 &v1, const VECT2 &v2, const PRECOND &P, gmm::iteration &iter) const { gmm::gmres(m, v1, v2, P, 50, iter); } }; struct QMR { template void operator()(const MAT &m, VECT1 &v1, const VECT2 &v2, const PRECOND &P, gmm::iteration &iter) const { gmm::qmr(m, v1, v2, P, iter); } }; struct CG { template void operator()(const MAT &m, VECT1 &v1, const VECT2 &v2, const PRECOND &P, gmm::iteration &iter) const { gmm::cg(m, v1, v2, P, iter); } }; template void do_test(const SOLVER &solver, const MAT &m1, VECT1 &v1, VECT2 &v2, const PRECOND &P, Rcond cond) { typedef typename gmm::linalg_traits::value_type T; typedef typename gmm::number_traits::magnitude_type R; R prec = gmm::default_tol(R()), error(0); size_type m = gmm::mat_nrows(m1); std::vector v3(m); gmm::iteration iter((double(prec*cond))*100.0, (print_debug > 2) ? 1:0, 50*m); for (int i = 0; i < 30; ++i) { iter.init(); gmm::fill_random(v1); if (i >= 4) gmm::fill_random(v2); if (i == 29) gmm::clear(v1); solver(m1, v1, v2, P, iter); gmm::mult(m1, v1, gmm::scaled(v2, T(-1)), v3); error = gmm::vect_norm2(v3) / gmm::vect_norm2(v1); // if (error * R(0) != R(0)) // GMM_ASSERT1(false, "Inconsistent error: " << error); if (error <= prec * cond * R(20000)) { ps_stat(solver, iter.get_iteration(), false); ps_stat(P, iter.get_iteration(), false); return; } } ps_stat(solver, iter.get_iteration(), true); ps_stat(P, iter.get_iteration(), true); ++nb_fault; if (nb_fault > nb_fault_allowed) GMM_ASSERT1(false, "Error too large: " << error); } template bool test_procedure(const MAT1 &m1_, const VECT1 &v1_, const VECT2 &v2_) { VECT1 &v1 = const_cast(v1_); VECT2 &v2 = const_cast(v2_); MAT1 &m1 = const_cast(m1_); typedef typename gmm::linalg_traits::value_type T; typedef typename gmm::number_traits::magnitude_type R; R prec = gmm::default_tol(R()); size_type m = gmm::mat_nrows(m1); if (m == 0) return true; static int nexpe = 0, effexpe = 0; ++nexpe; gmm::set_warning_level(0); gmm::clean(v1, 0.01); for (size_type i = 0; i < gmm::vect_size(v1); ++i) if (v1[i] != T(0) && gmm::abs(v1[i]) < R(1) / R(101)) GMM_ASSERT1(false, "Error in clean"); if (print_debug) { cout << "Begin experiment " << nexpe << "\n\nwith " << m1 << "\n\n"; gmm::set_warning_level(3); } R det = gmm::abs(gmm::lu_det(m1)); if (det < sqrt(prec)*R(10)) return false; R cond = gmm::condest(m1); if (print_debug) cout << "condition number = " << cond << " det = " << det << endl; if (det == R(0) && cond < R(1) / prec && cond != R(0)) GMM_ASSERT1(false, "Inconsistent condition number: " << cond); if (sqrt(prec) * cond >= R(1)/R(100)) return false; ++effexpe; cout << "."; cout.flush(); gmm::identity_matrix P1; gmm::diagonal_precond P2(m1); gmm::mr_approx_inverse_precond P3(m1, 10, prec); gmm::ilu_precond P4(m1); gmm::ilut_precond P5(m1, 20, prec); gmm::ilutp_precond P5b(m1, 20, prec); R detmr = gmm::abs(gmm::lu_det(P3.approx_inverse())); if (sizeof(R) > 4 || m < 15) { if (print_debug) cout << "\nLeast square CG with no preconditionner\n"; do_test(LEAST_SQUARE_CG(), m1, v1, v2, P1, cond); if (print_debug) cout << "\nBicgstab with no preconditionner\n"; do_test(BICGSTAB(), m1, v1, v2, P1, cond); if (print_debug) cout << "\nBicgstab with diagonal preconditionner\n"; do_test(BICGSTAB(), m1, v1, v2, P2, cond); if (detmr > prec * R(100)) { if (print_debug) cout << "\nBicgstab with mr preconditionner\n"; do_test(BICGSTAB(), m1, v1, v2, P3, cond); } if (print_debug) cout << "\nBicgstab with ilu preconditionner\n"; do_test(BICGSTAB(), m1, v1, v2, P4, cond); if (print_debug) cout << "\nBicgstab with ilut preconditionner\n"; do_test(BICGSTAB(), m1, v1, v2, P5, cond); if (print_debug) cout << "\nBicgstab with ilutp preconditionner\n"; do_test(BICGSTAB(), m1, v1, v2, P5b, cond); } if (print_debug) cout << "\nGmres with no preconditionner\n"; do_test(GMRES(), m1, v1, v2, P1, cond); if (print_debug) cout << "\nGmres with diagonal preconditionner\n"; do_test(GMRES(), m1, v1, v2, P2, cond); if (detmr > prec * R(100)) { if (print_debug) cout << "\nGmres with mr preconditionner\n"; do_test(GMRES(), m1, v1, v2, P3, cond); } if (print_debug) cout << "\nGmres with ilu preconditionner\n"; do_test(GMRES(), m1, v1, v2, P4, cond); if (print_debug) cout << "\nGmres with ilut preconditionner\n"; do_test(GMRES(), m1, v1, v2, P5, cond); if (print_debug) cout << "\nGmres with ilutp preconditionner\n"; do_test(GMRES(), m1, v1, v2, P5b, cond); if (sizeof(R) > 5 || m < 15) { if (print_debug) cout << "\nQmr with no preconditionner\n"; do_test(QMR(), m1, v1, v2, P1, cond); if (print_debug) cout << "\nQmr with diagonal preconditionner\n"; do_test(QMR(), m1, v1, v2, P2, cond); if (print_debug) cout << "\nQmr with ilu preconditionner\n"; do_test(QMR(), m1, v1, v2, P4, cond); if (print_debug) cout << "\nQmr with ilut preconditionner\n"; do_test(QMR(), m1, v1, v2, P5, cond); if (print_debug) cout << "\nQmr with ilutp preconditionner\n"; do_test(QMR(), m1, v1, v2, P5b, cond); } gmm::dense_matrix m2(m, m), m3(m, m); gmm::mult(gmm::conjugated(m1), m1, m2); gmm::copy(m1, m3); gmm::add(gmm::conjugated(m1), m3); gmm::copy(m2, m1); gmm::ildlt_precond P6(m1); gmm::ildltt_precond P7(m1, 10, prec); if (!is_hermitian(m1, prec*R(100))) GMM_ASSERT1(false, "The matrix is not hermitian"); if (print_debug) cout << "\nCG with no preconditionner\n"; do_test(CG(), m1, v1, v2, P1, cond*cond); if (print_debug) cout << "\nCG with diagonal preconditionner\n"; do_test(CG(), m1, v1, v2, P2, cond*cond); if (print_debug) cout << "\nCG with ildlt preconditionner\n"; do_test(CG(), m1, v1, v2, P6, cond*cond); if (print_debug) cout << "\nCG with ildltt preconditionner\n"; do_test(CG(), m1, v1, v2, P7, cond*cond); if (effexpe == 50) { cout << "\n\n" << effexpe << " effective experiments with "; if (nb_fault > 1) cout << nb_fault << " faults"; else if (nb_fault == 1) cout << "1 fault"; else cout << "no fault"; cout << ", size = " << m << " base type : " << typeid(T).name() << endl; cout.precision(3); print_stat(LEAST_SQUARE_CG(), "solver least square cg"); print_stat(BICGSTAB(), "solver bicgstab"); print_stat(GMRES(), "solver gmres"); print_stat(QMR(), "solver qmr"); print_stat(CG(), "solver cg"); print_stat(P1, "no precond"); print_stat(P2, "diag precond"); print_stat(P3, "mr precond"); print_stat(P4, "ilu precond"); print_stat(P5, "ilut precond"); print_stat(P5b, "ilutp precond"); print_stat(P6, "ildlt precond"); print_stat(P7, "ildltt precond"); if (sizeof(R) > 4 && ratio_max > 0.16) GMM_ASSERT1(false, "something wrong .."); if (sizeof(R) <= 4 && ratio_max > 0.3) GMM_ASSERT1(false, "something wrong .."); return true; } return false; }